Главная страница
qrcode

1. Жизнь определения жизни. Уровни организации


Название1. Жизнь определения жизни. Уровни организации
Анкорhhhhhhhhhhhhhh.doc
Дата24.09.2017
Размер5.24 Mb.
Формат файлаdoc
Имя файлаhhhhhhhhhhhhhh.doc
ТипДокументы
#18551
страница1 из 11
Каталог
  1   2   3   4   5   6   7   8   9   10   11

1.Жизнь. определения жизни. Уровни организации.

-питание, рост, одряхление

- совокупность функций, сопротивляющихся смерти

- сложный химический процесс

- наивысшая форма движения материи

- способ существования белковых тел

Жизнь- открытая, макромолекулярная система, которой свойственны иерархическая организация, способность к самовоспроизведению, обмен веществ, поток энергии.

Свойства жизни:1)обмен веществ-совокупность процесса ассимиляции и диссимиляции

2)структурированность-упорядоченность живых систем в пространстве и времени

3)самообновление- восстановление своих структур

4)онтогенез- индивидуальное развитие

5)раздражимость и возбудимость

6)самовоспроизведение

7)наследственность

8)изменчивость

Уровни организации: -молекулярногенетический

-клеточный

-организменный

-популяционно-видовой

-бигеоценотический

-биосферный
2. Клетка. Определение. Происхождение. Эволюция клетки.

Клетка- наименьшая по объему структура, которой присуща вся совокупность свойств жизни и которая может в подходящих условиях поддерживать эти свойства в самой себе, а также передавать их в ряду поколений.

Прокариотические клетки появились на земле раньше эукариотических. Это заставляет думать о происхождении эукариотический клетки от прокариотической.

Симбиотическая гипотеза:аэробная клетка проникает в другую и она симбионируют.

Инвагинационна теория: внутри клетки хозяина все органоиды образовались путем впячивания оболочки.
3. Типы клеточной организации. Про- и эукариоты.

Выделяю прокариотический и эукариотический типы.






4. Органоиды клетки. Строение и функции.

1.Плазмолема


2. ядро:







3. Цитоплазма:






















5. Временная организация клетки. Клеточный и митотический цикл. Митоз.







6. Размножение. Половое, бесполое.












7. Характеристика и значение половых клеток.







8. Гаметогенез. Спермато и овогенез.











9. митоз и мейоз. Сравнение. Биологическое знаечение.



Биологический смысл мейоза заключается в сохранении постоянства хромосомного набора для данного вида.

при мейозе происходит частичная перекомбинация наследственной информации, возникают новые сочетания генов. Это повышает выживаемость вида в процессе эволюции.

Различия: 1.Мейоз включает два деления клетки, которые также состоят из профазы, метафазы, анафазы и телофазы. Митоз – одно деление.

2. мейоз лежит в основе полового размножение, митоз – бесполого.

3.в метафазе мейоза по экватору выстраиваются биваленты, а в митозе хромосомы.

4.мейоз включает конъюгацию и кроссинговер, митоз нет.

5. удвоение ДНК происходит в интерфазе перед делением- митоз, удвоение молекул ДНК происходит только перед первым делением, перед вторым делением интерфазы нет-мейоз.

6.в результате митоза образуются 2 диплоидные соматические клетки. При мейозе образуются 4 гаплоидные половые клетки.

Сходства:1. Имеются одинаковые стадии деление.

2. происходит редупликация ДНК и спирализация хромосом.
10. уровни организации генетического материала.

1.генный уровень – ген (элементарная единица наследственности; участок молекулы ДНК, контролирующий последовательность аминокислот в определенной полипептидной цепи).

2.хромосомный – хромосом

ы.



3.геномный - геном (набор хромосом, содержащийся в гаплоидной клетке).


11. Химическая природа генетического материала. Строение и функции ДНК и РНК.

Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков. С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы.

ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали». В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Асимметричные концы цепи ДНК называются 3' (три прим) и 5' (пять прим). Полярность цепи играет важную роль при синтезе ДНК (удлинение цепи возможно только путём присоединения новых нуклеотидов к свободному 3'-концу).

РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами — РНК-полимеразами. Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией. Трансляция — это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнавания кодонов и доставки соответствующих аминокислот к месту синтеза белка, а рибосомные РНК служат структурной и каталитической основой рибосом.
12. принципы записи генетической информации. Генетический код и его свойства.

Генетический код – свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов. Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек в строго определенной последовательности. Эта последовательность определяет строение белка, а следоваетльно и его свойства. Набор аминокислот универсален почти для всех живых организмов.

Свойства ген. кода:

-триплетность- сочетание 3-х нуклеотидов

-непрерывность- между триплетами нет знаков препинания, т.е. информация считывается непрерывно

-неперекрываемость- один и тот же нуклеотид не может одновременно входить в состав нескольких триплетов

-специфичность- определенный кодон соответствует только 1 аминокислоте

-вырожденность- одной и той же аминокислоте может соответствовать несколько кодонов

-универсальность- генетический код работает одинаково в организмах разного уровня сложности

-помехоустойчивость
13. самовоспроизведение генетического материала. Репликация.

В процессе репликации генетического материала водородные связи между азотистыми основаниями разрываются, и из двойной спирали образуется две нити ДНК. Каждая из них становится матрицей для синтеза другой комплементарной нити ДНК. Последняя, через водородную связь, соединяется с матричной ДНК. Итак, любая дочерняя молекула ДНК состоит из одной старой и одной новой полинуклеотидной цепи. В результате дочерние клетки получают такую же генетическую информацию, как и у родительских клеток. Поддержание такой ситуации обеспечивается механизмом самокоррекции, осуществляемым ДНК-полимеразой. Способность генетического материала, ДНК, к самовоспроизведению ( репликации) лежит в основе размножения живых организмов, передачи наследственных свойств из поколения в поколение и развития многоклеточного организма из зиготы.
14. изменение структуры ДНК. Последствия изменений, мутации.

Нескорректированные изменения химической структуры генов, воспроизводимые в последовательных циклах репликации и проявляющиеся у потомства в виде новых вариантов признаков, называются генными мутациями.

Изменения структуры ДНК можно разделить на 3 группы: 1. Замена одних оснований другими.

2. сдвиг рамки считывания при изменении количества нуклеотидных пар в составе гена.

3. изменение порядка нуклеотидных последовательностей в пределах гена.

1. Замена одних оснований другими. Могут возникать случайно или под влиянием конкретных химических агентов. Если измененная форма основания остается незамеченной во время репарации, то при ближайшем цикле репликации она может присоединить к себе другой нуклеотид.

Другой причиной может быть ошибочное включение в синтезируемую цепь ДНК нуклеотида, несущего измененную форму основания или его аналог. Если эта ошибка остается незамеченной во время репарации, то измененное основание включается в процесс репликации что приводит к замене одной пары на другую.

Вследствие образуется новый триплет в ДНК. Если этот триплет кодирует ту же аминокислоту, то изменения не отразятся на структуре пептида (вырожденность генетического кода). Если вновь возникший триплет кодирует другую аминокислоту, изменяется структура пептидной цепи и свойства белка.

2. сдвиг рамки считывания. Эти мутации происходят из-за выпадения (делеция) или вставки в нуклеотидную последовательность ДНК одной или нескольких пар комплементарных нуклеотидов. Причиной может быть воздействие на генетический материал некоторых химических веществ (акридиновых соединений). Большое число мутаций происходит вследствие включения в ДНК подвижных генетических элементов – транспозонов. Так же причиной могут послужить ошибки при рекомбинации при неравноценном внутригенном кроссинговере.

При таких мутациях изменяется смысл биологической информации, записанной в данной ДНК.

3. изменение порядка нуклеотидных последовательностей. Данный тип мутаций происходит вследствие поворота участка ДНК на 180ᵒ (инверсия). Это происходит из-за того что молекула ДНК образует петлю, в пределах которой репликация идет в неправильном направлении. В пределах инвертированного участка нарушается считывание информации и нарушается аминокислотная последовательность белка.

Причины: -неравный кроссинговер между гомологичными хромосомами

-внутрихромосомный кроссинговер

-разрывы хромосом

-разрывы с последующим соединением элементов хромосом

-копирование гена и его перенос в другой участок хромосомы
15. биологические антимутационные механизмы. Механизмы коррекции изменений ДНК. Репарация.





16. генный уровень организации генетического материала. Ген, его свойства.



Ген- элментарная единица наследственности, участок молекулы ДНК, контролирующий последовательность аминокислот в определенной полипептидной цепи.

-ген хранит и передает наслесвенную информацию

-ген способен к мутации

-ген способен к реперации и передаче ее по наследству

-ген способен к реализации (транскрипция, трансляция)

-генетический материал обладает устойчивостью




17. Множественный аллелизм. Наследование групп крови.

Множественный аллелизм – присутствие в генофонде вида одновременно различных аллелей. Пример: различные варианты окраска глаз у плодовой мухи: белая, вишневая, красная, эозиновая, - обусловлены различными аллелями соответствующего гена. У человека множественный аллелизм свойствен многим генам. Так, три аллеля гена I определяют групповую принадлежность крови по системе АВО. Два аллеля имеет ген, обуславливающий резус-принадлежность. Группы крови обозначают по наличию или отсутствию определенного типа «склеивающего» фактора (агглютиногена):

I ( 0 ) – первая группа крови характеризуется отсутствием антигенов А и В;

II ( А ) – устанавливается при наличии антигена А;

III ( В ) – устанавливается при наличии антигена В;

IV( АВ ) – антигенов А и В.

• По законам Менделя, у родителей с I группой крови, будут рождаться дети, у которых отсутствуют антигены А- и В-типа.

• У супругов с I и II группами дети получают соответствующие группы крови. Та же ситуация характерна для I и III групп.

• Люди с IV группой могут иметь детей с любой группой крови, за исключением I, вне зависимости от того, антигены какого типа присутствуют у их партнера.

• Наиболее непредсказуемо наследование ребенком группы крови при союзе обладателей со II и III группами. Их дети могут иметь любую из четырех групп крови с одинаковой вероятностью.

Исключением из правил является так называемый «бомбейский феномен». У некоторых людей в генотипе присутствуют А и В антигены, но не проявляются фенотипически. Правда, такое встречается крайне редко и в основном у индусов, за что это явление и получило свое название.

Резус-фактор представляет собой антиген (белок), который находится в эритроцитах. Примерно 80-85% людей имеют его и соответственно являются резус-положительными. Те же, у кого его нет – резус-отрицательными.

Группа крови

матери

Группа крови отца

Rh(+) rh(-)

Rh(+)

Любой

Любой

rh(-)

Любой

rh(-)

  1   2   3   4   5   6   7   8   9   10   11

перейти в каталог файлов


связь с админом