Главная страница
Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
qrcode

Кровь. Мышечные и нервные ткани. 1. Кровь. Компоненты крови. Химический состав плазмы крови. Классификация форменных элементов крови. Гемограмма. Классификация лейкоцитов. Лейкоцитарная формула


Скачать 61.61 Kb.
Название1. Кровь. Компоненты крови. Химический состав плазмы крови. Классификация форменных элементов крови. Гемограмма. Классификация лейкоцитов. Лейкоцитарная формула
АнкорКровь. Мышечные и нервные ткани.doc
Дата07.12.2017
Размер61.61 Kb.
Формат файлаdoc
Имя файлаКровь. Мышечные и нервные ткани.doc
ТипДокументы
#32735
КаталогОбразовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей

1. Кровь. Компоненты крови. Химический состав плазмы крови. Классификация форменных элементов крови. Гемограмма. Классификация лейкоцитов. Лейкоцитарная формула.
Кровь – своеобразная жидкая ткань, относящаяся к группе тканей внутренней среды, которая циркулирует во внутренних сосудах, благодаря ритмичных сокращениям сердца. На долю крови приходится 6-8% массы тела.
Компоненты крови – включают форменные элементы (эритроциты, лейкоциты, тромбоциты) и плазму крови – жидкое межклеточное вещество.
Химический состав плазмы крови: 90% воды, 9% органических в-в. И 1% неорганических. Главные органические компоненты плазмы – белки (более 200 видов), которые обеспечивают ее вязкость, онкотическое давление, свертываемость, переносят различные вещества и выполняют защитные функции. Основные белки плазмы:

- альбумины – количественно преобладающие белки плазмы крови, переносят ряд метаболитов, гормонов, ионов, поддерживают онкотическое давление крови;

- глобулины (альфа и бета) – переносят ионы металлов и липиды в форме липопротеинов; глобулины (гамма) – представляют собой фракцию антител (иммуноглобулины);

- фибриноген – обеспечивает свёртывание крови, превращаясь в нерастворимый белок фибрин под действием тромбина.
Все форменные элементы крови подразделяются на красные кровяные клетки, или эритроциты, белые кровяные клетки, или лейкоциты и кровяные пластинки, или тромбоциты.
Гемограмма – количественное содержание форменных элементов крови в одном литре или одном миллилитре.

Гемограмма взрослого человека:

I. эритроцитов: у женщины – 3,7–4,9 млн в литре; у мужчины – 3,9–5,5 млн/мкл;

II. тромбоцитов 200–400 тыс/мкл;

III. лейкоцитов 3,8–9,0 тыс/мкл.
Среди лейкоцитов выделяют два типа клеток: зернистые, или гранулоциты, и незернистые, или агранулоциты. К гранулоцитам относятся нейтрофилы, эозинофилы и базофилы, которые различаются между собой характером цитоплазматической зернистости. К агранулоцитам принадлежат моноциты и лимфоциты.
Лейкоцитарная формула (лейкограмма) — процентное соотношение различных видов лейкоцитов, определяемое при подсчёте их в окрашенном мазке крови под микроскопом.
2. Эритроциты. Строение (форма, размеры в норме, при старении и патологических изменениях). Плазмолемма и примембранный цитоскелет эритроцитов.
Эритроциты – наиболее многочисленные форменные элементы крови. Представляют собой постклеточные структуры, утратившие в процессе развития ядро и почти все органеллы.
Строение эритроцита: плазмолемма; цитоскелет; гемоглобин; ядро и органеллы отсутствуют.

Имеют форму двояковогнутого диска. Благодаря такой форме обеспечивается: увеличение их поверхности, снижение диффузионного расстояния, возможность увеличения объема эритроцита, способность к обратимой деформации. В мазке крови эритроциты окрашиваются оксифильно и выглядят в виде округлых тел диаметром 7,8 мкм. Число эритроцитов у мужчин составляет 4,5-5,3*10(12)/л., а у женщин 4-4,5*10(12)/л.
Изменения формы эритроцитов возникает при их старении и в патологических условиях вследствие нарушений осмотического равновесия или дефектов цитоскелета. В частности, сферическая форма эритроцитов, наблюдаемая при врожденном сфероцитозе, сопровождается их неспособностью к растяжению, деформации, осмотической нестойкостью и усиленным разрушением. Форма эритроцитов также может изменяться три образовании патологических форм гемоглобина, такие эритроциты приобретают серповидную форму, характеризуются малой гибкостью и сниженной продолжительностью жизни.
Плазмолемма эритроцитов является самой толстой (20 нм) мембраной из всех биологических мембран. Она содержит рецепторы иммуноглобулинов, компонентов комплемента и ряда других веществ. В ее состав входят многочисленные интегральные и периферические белки, участвующие в процессах (в качестве ионных насосов, каналов, переносчиков) и обеспечивающие прикрепление элементов цитоскелета. Она обладает гибкостью, прочностью, растяжимостью, резистентностью к окислению, протеолизу и влиянию других повреждающих факторов. На наружной поверхности плазмолемма несет антигены Rh и детерминанты групп крови.

Мембрана эритроцита имеет типичную белково-липидную структуру, среди ее белков наибольшее кол-во (по массе) составляют: гликофорин и белок полосы 3.
Примембранный цитоскелет. 

Функции примембранного цитоскелета:
- механическая функция;
- участие в ряде регуляторных процессов, в том числе в передаче сигналов.
Плазмолемма и примембранный цитоскелет.Клеточная мембрана эритроцита довольно пластична, что позволяет клетке деформироваться и легко проходить по узким капиллярам (их диаметр 3-4 мкм). Главные трансмембранные белки эритроцита - белок полосы 3 и гликофорины. Белок полосы 3вместе с белками примем- бранного цитоскелета (спектрин, анкирин, фибриллярный актин, белок полосы 4.1) обеспечивает поддержание формы эритроцита в виде двояковогнутого диска.  Гликофорины- мембранные гликопротеины, их полисахаридные цепи содержат Аг-детерминанты (например, агглютиногены А и В системы групп крови AB0).

3. Нейтрофильные гранулоциты. Световая и электронная микроскопия (строение ядра, цитоплазмы, цитоплазматических гранул). Функции.
Нейтрофильные гранулоциты – наиболее распространенный вид лейкоцитов и гранулоцитов. Они попадают в кровь из красного костного могза, циркулируют в ней около 6-10 ч. После циркуляции они мигрируют из крои в ткани, где функционируют от нескольких часов до 1-2 сут. Они могут разрушаться значительно быстрее в очаге воспаления или в результате выхода на поверхность слизистых оболочек.

Нейтрофилы (60-65%). Время циркуляции в крови 6-7 ч., общая продолжительность жизни до 4 дней. Размер 12-15 мкм.
Характер строения ядра определяется его зрелостью, отражающей степень конденсации хроматина: бобовидное ядро, палочноядерное ядро, сегментированное ядро.
Цитоплазма нейтрофилов в СМ – слабооксифильна. При ЭМ в ней выявляются немногочисленные органеллы: отдельные элементы грЭПС, митохондрии, свободные рибосомы, мелкий Комплекс Гольджи, в составе цитоплазмы имеются гранулы:

- первичные (азурофильные), содержат миелопероксидазу, эластазу и кислую фосфотазу. Они имеют вид округлых или овальных мембранных пузырьков, электронноплотным содержимым, 400-800 нм.

- вторичные (специфические) содержат лизоцим, щелочную фосфотазу, коллагеназу и др. протеиназы. Плохо выявляются при СМ, т.к. имею размер 100-300 нм. При ЭМ имеют вид мембранных пузырьков округлой формы Электроннопрозрачные.
Функции: фагоцитоз (микрофаг), участие в воспалительной реакции, поддержание тканевого гомеостаза.

4. Эозинофильные гранулоциты. Световая и электронная микроскопия (строение ядра, цитоплазмы, специфические и азурофильные гранулы). Функции.
Эозинофильные гранулоциты содержатся в крови в небольшом кол-ве, однако легко узнаются на мазках благодаря многочисленным эозинофильным гранулам, заполняющим их цитоплазму. Они образуются в красном костном мзге, откуда попадают в кровь, циркулируя в ней 3-8 ч. После этого они покидают кровеносное русло и выселяются в ткани (преимущественно в кожу, слизистые оболочки дыхательного, пищеварительного и полового трактов), где функционируют в течение нескольких суток.

Эозинофилы. Транзитное время в крови 3-12 ч., продолжительность жизни 10 дней. Содержание эозинофилов 2-5% от общего числа лейкоцитов. Размеры эозинофилов на мазках 12-17 мкм.
Клетка округлой формы с небольшими выпячиваниями (псевдоподиями), ядро состоит из двух сегментов, цитоплазма сдержит умеренно развитые органеллы, многочисленные пузырьки, элементы цитоскетела, включения гликогена, липидные капли и гранулы двух основных типов:
Специфические гранулы – 95% это оксифильные, размером 0,5-1,5 мкм они окружены мембраной, имеют овальную или полигональную форму, среднюю электронную плотность, на ЭМ они гетерогенны:

- зона кристаллоида состоит из белка богатого аргинином – это главный основной белок (МВР),

- в состав гранул также входят пероксидаза, кислая фосфотаза, коллагеназа, гидролитические ферменты.
Азурофильные (неспецифические) гранулы - около 5% гранул не содержат кристаллоида, их содержимое гомогенно, в них выявлены гистаминаза, кислая фосфотаза и другие ферменты лизосом, размером 0,1-0,5 мкм, округлой формы с плотным содержимым.
Функции: участие в аллергических реакциях (разрушение гистамина), защита организма от паразитов (главный основной белок), фагоцитоз комплакса антиген-антитело.

5. Базофильные гранутоциты. Световая и электронная микроскопия (строение ядра, цитоплазмы, специфические и азурофильные гранулы). Функции.
Базофилы – самая малочисленная группа лейкоцитов. Они попадают в кровь из красного костного мозга, циркулируют в ней от 6 ч. до 1 сут., после чего покидают кровеносное русло и мигрируют в ткани, где находятся от нескольких часов до нескольких суток. Базофилы обладают значительно меньшей подвижностью и более слабой фагоцитарной активностью по сравнению с нейтрофилами. Содержание базофилов в крови составляет в норме 0,5-1% от общего числа лейкоцитов.
Размер клетки 8-10 мкм, ядро дольчатое, хроматин преимущественно дисперсный, органеллы развиты умеренно, цитоплазма слабооксифильна, пд ЭМ в ней выделяются митохондрии, элементы цитоскелета, сравнительно слабо развитый синтетический аппарат, скопления гликогена, липидные капли, разнообразные пузырьки, имеются гранулы.

Характеристика гранул:

Специфические гранулы размером 0,5-1,2 мкм, окрашиваютмя метохроматически, овальной или округлой формы с ЭП содержимым, на ЭМ уровне обнаруживается, что эти гранулы окружены мембраной и заполнены мелкозернистым в-вом (матриксом). В составе гранул выявлены: протеогликаны (гепарин), пероксидаза, гистамин, медиаторы воспаления.
Азурофильные гранулы – сравнительно немногочисленны, представляют собой лизосомы.
Функции: участие в аллергических реакциях, регуляция проницаемости капилляров, фагоцитов бактерий и других антигенов.

6. Агранулоциты. Моноциты. Световая и электронная микроскопия (строение ядра и цитоплазмы). Роль в системе мононуклеарных фагоцитов.
Агранулоциты  лейкоциты, в цитоплазме которых, в отличие от гранулоцитов, не содержится гранул.
Моноциты – самые крупные из лейкоцитов, относятся к агранулоцитам. Они образуются в красном костном мозге, откуда попадают в кровь, в которой находятся от 8 ч до 3-4 сут. Составляют 6-8%. В тканях под влиянием микроокружения и стимулирующих факторов они превращаются в различные виды макрофагов. Моноциты в совокупности с макрофагами образуют единую моноцитарно-макрофагальную систему или систему мононуклеарных фагоцитов.
Клетка диаметром 15-20 мкм, форма моноцитов округлая, при ЭМ обнаруживаются различные цитоплазматические выпячивания, ядро бобовидное, иногда дольчатое, светлое (хроматин рассеян в виде мелких гранул), с одним или несколькими мелкими ядрышками.

Цитоплазма слабобазофильна, содержит многочисленные мелкие митофондрии, короткие цистерны грЭПС, свободные рибосомы, полисомы, сравнительно крупный комплекс Гольджи. Цитоскелет хорошо развит, в цитоплазме присутствуют азурофильные гранулы (лизосомы).
Функции: фагоцитоз, участие в иммунологических реакциях, участие в противоопухолевой защите, синтез регуляторных в-в (монокинов).
В систему мононуклеарных фагоцитов входят моноциты крови и различные макрофаги (купферовские клетки печени, альвеолярные макрофаги, макрофаги соединит.ткани, астроциты глии, остеокласты). Все они возникают из гемопоэтической клетки и проходят ряд стадий: монобласт-промоноцит-моноцит-макрофаг.


7. Агранулоциты. Лимфоциты. Классификация по морфологическому и функциональному признаку. Световая и электронная микроскопия. Функции.
Агранулоциты  лейкоциты, в цитоплазме которых, в отличие от гранулоцитов, не содержится гранул.

Лимфоциты занимают второе место по численности среди лейкоцитов крови. Они представляют собой группу морфологически сходных, но функционально различных лейкоцитов, относящихся к агранулоцитам. Лимфоциты различаются экспрессией ряда молекул (маркеров) на своей поверхности. Источником развития лимфоцитов служат красный костный мозг и лимфоидные органы, из которых они попадают в кровь и лимфу. Большая часть этих клеток после циркуляции в крови приникает из сосудов в различные ткани, впоследствии вновь возвращаясь в кровь.
Клетки округлой формы, ядро с конденсированным хроматином, цитоплазма базофильна, слабо развиты органеллы.

Лимфоциты (20—30%), различают три типа по морфологическим признакам (по величине):

Малые (4,5-6 мкм) ядро круглое, овальное или бобовидное, темное (с преобладание гетерохроматина и плохо различимыми ядрышками), цитоплазма окружает ядро в виде узкого ободка, окрашивается резко базофильно, цитоскелет сравнительно хорошо выражен;

Средние (7-10 мкм), морфологически сходны с малыми лимфоцитами, однако ядро светлее, цитоплазма развита значмтельнее и занимает относительно больший объем в клетке;

Большие (10-18 мкм), сравнительно светлое ядро (с преобладанием эухроматина) округлой или бобовидной формы с хорошо видимыми ядрышками, слабобазофильная цитоплазма.
По функциональным признакам различают три типа лимфоцитов:B-клетки, T-клетки, NK-клетки.

В-лимфоциты (10-20%) распознают чужеродные структуры (антигены) вырабатывая при этом специфические антитела (белковые молекулы, направленные против чужеродных структур), развиваются в красной костном мозге, участвуют в гуморальном иммунитете, обладают способностью к процессированию антигена, после бласттрансформации превращаются в плазмоциты.

Т-лимфоциты (70- 80%) выполняют функцию регуляции иммунитета. Т-помощники стимулируют выработку антител, а Т-супрессоры тормозят ее; развиваются в тимусе, участвуют в клеточном иммунитете, после бласттрансформации превращаются в Т-киллеры, дифференцируются на Т-киллеры и Т-хелперы.

NK-лимфоциты (5-10%) осуществляют контроль над качеством клеток организма. При этом NK-лимфоциты способны разрушать клетки, которые по своим свойствам отличаются от нормальных клеток, например, раковые клетки. Участвуют в противоопухолевом иммунитете, содержат в плазмолемме гранулы.

8. Тромбоциты. Световая и электронная микроскопия (строение гиаломера и грануломера). Функции.
Тромбоциты, или кровяные пластинки, - мелкие дисковидные двояковыпуклые безъядерные постклеточные структуры, диаметром 2-3 мкм. Они образуются в красном костном мозге в результате фрагментации участков цитоплазмы мегакариоцитов, поступают в кровь, в которой находятся 5-10 дней, после чего фагоцитируются макрофагами. Концентрация тромбоцитов в крови равна 200-300*10(9)/л.

Тромбоцит окружен плазмолеммой и включает светлую прозрачную наружную часть, называемую гиаломером, и центральную окрашенную часть, содержащую азурофильные гранулы – грануломер.

При СМ в тромбоцитах обнаруживаются центральная зернистая часть  грануломер и периферическая беззернистая стекловидная зона  гиаломер. По данным ЭМ тромбоциты имеют трехслойную плазматическую мембрану. В их цитоплазме различают гиаломер (гиалоплазму) и грануломер.
Гиаломер содержит две системы канальцев и большую часть элементов цитоскелета: 1. Канальцы, связанные с поверхностью тромбоцита, т.е. открытая система канальцев – как результат инвагинаций плазмолеммы, представлена гладкими трубочками, функция - система эндоцитоза и экзоцитоза гранул; 2. Система плотных трубочек, она образуется при участи Комплекса Гольджи, представлена узкими мембранными трубочками, заполненными плотным зернистым содержимым. В фуекциональном отношении ответственна за выработку простагландинов.

Цитоскелет тромбоцитов представлен микротрубочками, микрофиламентами и промежуточными филаментами.
Грануломер содержит митохондрии, частицы гликогена, отдельные рибосомы, единичные короткие цистерны грЭПС, элементы КГ и гранулы нескольких видов:

а) альфа гранулы (300-500 нм) содержат фибриноген, фибронектин, тромбоцитарный фактор роста.

б) бета гранулы (250-300 нм) с плотным матриксом, в состав гранул входит: гистамин, серотонин, АТФ, Са(2+) и Мg(2+).

в) гама гранулы (200-250 нм) – типичные лизосомы, содержащие гидролитические ферменты.

г) микропероксисомы, в низ выявлена пероксидаза.
Функции: участие в процессе свертывания крови; надзор за функционированием эндотелия сосудистой системы; стимуляция регенерации поврежденной ткани; участие в реакции заживления ран.


14. Мышечное волокно. Компоненты мышечного волокна. Световая и поляризационная микроскопия.
Мышечное волокно скелетной (соматической) мышечной тканипредставляет собой цилиндрическое образование диаметром 10-100 мкм (в среднем - 50 мкм) вариабельной длины (до 10-30 см). Мышечные волокна в мышцах образуют пучки, в которых они лежат параллельно и, деформируя друг друга, часто приобретают неправильную многогранную форму.
Поперечная исчерченность скелетных мышечных волокон обусловлена чередованием темных A-дисков (анизотропных,обладающих двойным лучепреломлением в поляризованном свете) и светлых I-дисков (изотропных, не обладающих двойным лучепреломлением). Каждый диск I рассекается надвое тонкой темной Z-линией, называемой также телофрагмой. В середине A-диска определяется светлая зона - полоска Н, через центр которой проходит М-линия – мезофрагма.
Компонентами мышечного волокна являются: (1) миосимпластическая часть (которая занимает основной его объем и ограничена сарколеммой) и (2) миосателлитоциты - мелкие уплощенные клетки, прилежащие к поверхности миосимпласта и располагающиеся в углублениях его сарколеммы. Снаружи сарколемма покрыта толстой базальной мембраной, в которую вплетаются ретикулярные волокна.

Миосимпластическая часть мышечного волокна включает от нескольких сотен до нескольких тысяч ядер, лежащих на периферии под сарколеммой, и саркоплазму, образующую его центральную часть.

Ядра миосимпласта - сравнительно светлые, с 1-2 ядрышками, диплоидные, овальные, уплощенные, длиной 10-20 мкм. Ориентированы длинной осью вдоль волокна. Содержание ядер несколько выше в красных волокнах по сравнению с белыми. Саркоплазма миосимпласта содержит все органеллы общего значения (за исключением центриолей) и некоторые специальные органеллы, а также включения.
У скелетного мышечного волокна при СМ видна поперечная исчерченность, т.е. чередование светлых и темных полос. Темные полосы называют А-дисками или анизотропией светлые (изотропными). В А-дисках сосредоточены нити миозина, обладающие анизотропией и поэтому имеющие темный цвет. I-диски образованы нитями актина. В центре I-дисков видна тонкая Z-пластинка. В средней части А-диска имеется более светлая Н-зона, где нет актиновых нитей. При электронной микроскопии в ее центре видна очень тонкая М-линия. Она образована цепями опорных белков, к которым крепятся миозиновые протофибриллы.
Миофибриллы в поляризованном свете обнаруживают характерную поперечную исчерченность, связанную с чередованием, анизотропных (А) и изотропных (I) дисков. Диски А обладают ярко выраженным положительным двулучепреломлением и кажутся светлыми в поляризованном свете (в обычном свете они темные), тогда как I-диски почти полностью лишены способности к двулучепреломлению и в поляризованном свете выглядят темными (в обычном свете - светлые).

15. Сократительный аппарат мышечного волокна. Моифибриллы. Саркомер, формула саркомера.
Сократительный аппарат мышечного волокна представлен миофибриллами - специальными органеллами, которые располагаются продольно в центральной части саркоплазмы и отделяются друг от друга рядами вытянутых митохондрий и цистерн саркоплазматической сети. На поперечном разрезе волокна видно, что миофибриллы симпласта образуют особые группы - поля Конгейма.
Миофибриллыимеют вид нитей диаметром 1-2 мкм и длиной, сопоставимой с протяженностью волокна. Их количестве в отдельном волокне варьирует в широких пределах (от нескольких десятков до 2000 и более). Они обладают собственной поперечной исчерченностью, причем в мышечном волокне они располагаются столь упорядоченно, что А- и I-диски одних миофибрилл точно совпадают с аналогичными дисками других, обусловливая поперечную исчерченность всего волокна. Структурно-функциональной единицей миофибриллы является саркомер (миомер).
Саркомер (миомер) представляет собой участок миофибриллы, расположенный между двумя телофрагмами (Z-линиями) и включающий A- диск и две половины I-дисков - по одной половине с каждой стороны. В расслабленной мышце длина саркомера составляет около 2-3 мкм, а ширина его участков выражается соотношением Н : А : I = 1 : 3 : 2; при сокращении мышцы саркомер укорачивается до 1.5 мкм. Миофибрилла типичного мышечного волокна человека длиной около 5 см насчитывает порядка 20 тыс. последовательно расположенных саркомеров.
Структура саркомера представлена упорядоченной системой толстых и тонких белковых нитей (миофиламентов). Толстые нити (диаметром около 10-12 нм и длиной 1.5-1.6 мкм) связаны с мезофрагмой и сосредоточены в A-диске, а тонкие (диаметром 7-8 нм и длиной 1 мкм) прикреплены к телофрагмам, образуют I-диски и частично проникают в A-диски между толстыми нитями (более светлый участок А- диска, свободный от тонких волокон, называется полоской Н). В саркомере насчитывается несколько сотен толстых нитей. По сечению саркомера толстые и тонкие нити располагаются высокоорганизованно в узлах гексагональной решетки. Каждая толстая нить окружена шестью тонкими, каждая из тонких нитей частично входит в окружение трех соседних толстых.
Структурные элементы саркомера в расслабленном состоянии можно выразить формулой: Z+1/2I+1/2A+M+1/2A+1/2I+Z. Таким образом, каждый саркомер содержит один А-диск и две половины I-диска.

16. Строение саркомера (электронная микроскопия). Молекулярная организация актиновых миофиламентов.
Саркомер (миомер) представляет собой участок миофибриллы, расположенный между двумя телофрагмами (Z-линиями) и включающий A- диск и две половины I-дисков - по одной половине с каждой стороны. В расслабленной мышце длина саркомера составляет около 2-3 мкм, а ширина его участков выражается соотношением Н : А : I = 1 : 3 : 2; при сокращении мышцы саркомер укорачивается до 1.5 мкм. Миофибрилла типичного мышечного волокна человека длиной около 5 см насчитывает порядка 20 тыс. последовательно расположенных саркомеров.
Структура саркомера представлена упорядоченной системой толстых и тонких белковых нитей (миофиламентов). Толстые нити (диаметром около 10-12 нм и длиной 1.5-1.6 мкм) связаны с мезофрагмой и сосредоточены в A-диске, а тонкие (диаметром 7-8 нм и длиной 1 мкм) прикреплены к телофрагмам, образуют I-диски и частично проникают в A-диски между толстыми нитями (более светлый участок А- диска, свободный от тонких волокон, называется полоской Н). В саркомере насчитывается несколько сотен толстых нитей. По сечению саркомера толстые и тонкие нити располагаются высокоорганизованно в узлах гексагональной решетки. Каждая толстая нить окружена шестью тонкими, каждая из тонких нитей частично входит в окружение трех соседних толстых.
Под электронным микроскопом в области саркомера были идентифицированы продольные нити, или микрофламенты, двух типов - тонкие и толстые. Толстые микрофиламенты локализуются в средней части саркомера (в его А-полосе), построены они из белка миозина. Тонкие микрофиламенты расположены в И-полосе и частично заходят между толстыми микрофиламентов в А-диске зоны Н. Одним концом они прикрепляются к телофрагме, а другой конец у них свободный, в то время как в толстых филаментов оба конца свободны. Тонкие микрофиламенты построены из белка актина, а также тропомиозином и тропонина. Диаметр тонких микрофиламентов 5 нм, длина -1 мкм. Толстые миозиновые микрофиламенты имеют диаметр 10-15 нм и длину 1,5 мкм. Количественное отношение миозинових нитей к актиновых 1:2 (т.е. на один миозиновои микрофиламенты приходится два актиновых).
Актиновые филаменты, скомпанованы из двух актиновых нитей, представляющих собой как бы бусинки глобулярных молекул актина. Тонкие нити имеют активные центры, расположенные друг от друга на расстоянии 40 нм, к которым могут прикрепляться головки миозина. Кроме актина в тонких нитях имеются и другие белки - тропомиозин, тропонины (I, T, C). Тропониновый комплекс располагается над активными центрами, прикрывая их, что препятствует соединению актина с миозином
Тонкие нити (миофиламенты) содержат сократимый белок актин (на него приходится 20% белков миофибриллы) и два регуляторных белка - тропонин (около 2%) и тропомиозин(около 7%). Последние формируют функционально единый тропонин-тропомиозиновый комплекс.

Актинв мономерной форме представлен полярными глобулярными субъединицами диаметром 4-5 нм (G-актин), которые имеют активные центры, способные связываться с молекулами миозина. G-актин агрегирует с образованием полимерного фибриллярного актина (F-актина), молекула которого имеет вид двух скрученных нитей толщиной 7 нм и вариабельной длины


17. Строение саркомера (электронная микроскопия). Молекулярная организация миозиновых миофиламентов.
Саркомер (миомер) представляет собой участок миофибриллы, расположенный между двумя телофрагмами (Z-линиями) и включающий A- диск и две половины I-дисков - по одной половине с каждой стороны. В расслабленной мышце длина саркомера составляет около 2-3 мкм, а ширина его участков выражается соотношением Н : А : I = 1 : 3 : 2; при сокращении мышцы саркомер укорачивается до 1.5 мкм. Миофибрилла типичного мышечного волокна человека длиной около 5 см насчитывает порядка 20 тыс. последовательно расположенных саркомеров.
Под электронным микроскопом в области саркомера были идентифицированы продольные нити, или микрофламенты, двух типов - тонкие и толстые. Толстые микрофиламенты локализуются в средней части саркомера (в его А-полосе), построены они из белка миозина. Тонкие микрофиламенты расположены в И-полосе и частично заходят между толстыми микрофиламентов в А-диске зоны Н. Одним концом они прикрепляются к телофрагме, а другой конец у них свободный, в то время как в толстых филаментов оба конца свободны. Тонкие микрофиламенты построены из белка актина, а также тропомиозином и тропонина. Диаметр тонких микрофиламентов 5 нм, длина -1 мкм. Толстые миозиновые микрофиламенты имеют диаметр 10-15 нм и длину 1,5 мкм. Количественное отношение миозинових нитей к актиновых 1:2 (т.е. на один миозиновои микрофиламенты приходится два актиновых).
Толстые нити (миофиламенты) образованы упорядоченно упакованными молекулами фибриллярного белка миозина, на который приходится около 54% всех белков миофибриллы. Молекула миозина имеет вид нити длиной 150 нм и толщиной 2 нм. На одном из концов эта молекула содержит две округлые головки длиной около 20 нм и шириной около 4 нм. Протеолитическими ферментами миозин расщепляется на две фракции - легкий меромиозин ("стержень" молекулы миозина) и тяжелый меромиозин (участей головок и шейки, связывающие их со стержневой частью). Молекула миозина может сгибаться, как на шарнирах, в месте соединения тяжелого меромиозина с легким и в области прикрепления головки. Стержневые части молекул миозина собраны в пучки (численностью до 200 и более). Такие пучки, соединенные зеркально концами друг с другом в облает М-линии, формируют толстые нити с центральной гладкой частью длиной около 0.2 мкм и двумя периферическими участками, в которых от центрального стержня отходят миозиновые головки (около 500). Миозин головок обладает АТФазной активностью (способностью осуществлять гидролиз АТФ), однако в отсутствие его взаимодействия с актином скорость гидролиза АТФ ничтожно мала.

18. Саркотубулярная система. Саркотубулярная сеть и Т-трубочки. Особенности строения и функциональное значение.
Аппарат передачи возбуждения (саркотубулярная система) необходим для того, чтобы распространяющаяся по сарколемме волна деполяризации могла вызвать срабатывание сократительного аппарата миофибрилл. В мышечном волокне связь между возбуждением и сокращением выполняют две специализированные мембранные системы - саркоплазматическая сеть и поперечные (Т-) трубочки, образующие функционально единую саркотубулярную систему.
Саркоплазматическая сеть - система уплощенных, вытянутых и анастомозирующих мембранных трубочек и мешочков, которая окружает каждый саркомер миофибриллы наподобие муфты. В области наружных отделов А- и I-дисков трубочки сливаются, образуя пары плоских терминальных цистерн (на каждый саркомер приходится по две такие пары). Саркоплазматическая сеть обладает выраженной способностью депонировать и выделять ионы кальция. Ее мембрана содержит высокие концентрации интегральных белков, являющихся кальциевыми насосами, а на внутренней поверхности находится белок кальсеквестрин, связывающий ионы Са2+.
Поперечные (Т-) трубочки представляют собой впячивания сарколеммы, отходящие от нее под прямым утлом к оси волокна и расположенные у млекопитающих вблизи границы I- и А- дисков. Ветви соседних Т-трубочек опоясывают каждый саркомер и анастомозируют друг с другом. Конечные учасзки Т-трубочек проникают в промежуток между двумя терминальными цистернами саркоплазматической сети, формируя вместе с ними особые структуры - триады. В области триады между параллельно лежащими мембранами Т-трубочки и терминальных цистерн, разделенными узкой щелью, имеются специализированные контакты, которые образованы рядами плотных частиц (ножек), предположительно служащие каналами выделения кальция.
Выделение кальция происходит после того, как волна деполяризации с поверхности сарколеммы по Т-трубочкам распространяется вглубь волокна. В области триад возбуждение передается на мембрану саркоплазматической сети и вызывает повышение ее проницаемости. Это приводит к быстрому выделению из ее элементов ионов кальция (главным образом, в области терминальных цистерн). Выделившийся Са2+ диффундирует в миофибриллы, где он, присоединяясь к тропонину, запускает механизм взаимодействия актина и миозина.

Активный обратный транспорт кальция в саркоплазматическую сеть (секвестрация кальция) происходит наряду с его выбросом, которьй представляет собой кратковременный процесс. Обратный транспорт Са2+ осуществляется благодаря деятельности кальциевых насосов (Са-зависимой АТФазы) в мембране саркоплазматической сети. Падение концентрации Са2+ вследствие его секвестрации приводит к возвращению тропонина в первоначальное конформационное состояние, прекращению взаимодействия миозиновых мостиков с актином и расслаблению мышечного волокна.


19. Механизм мышечного сокращения поперечнополосатой скелетной мышечной ткани.
Механизм мышечного сокращения описывается теорией скользящих нитей, согласно которой укорочение каждого саркомера при сокращении происходит благодаря тому, что тонкие нити вдвигаются в промежутки между толстыми без изменения их длины.

Скольжение нитей в саркомере и усилие, развиваемое мышцей, обеспечиваются благодаря циклической активности миозиновых мостиков, которые при сокращении повторно прикрепляются к актину, обеспечивают усилие тяги, а затем открепляются от него. В этом механизме АТФ играет двойную роль, обеспечивая энергию, необходимую как для осуществления сокращения, так и для открепления мостиков.

Строгая пространственная упорядоченность взаимодействия множества толстых и тонких нитей в саркомере определяется наличием сложно организованного поддерживающего аппарата. Его элементы на всех этапах мышечного сокращения и расслабления, динамично перестраиваясь, фиксируют и удерживают миофиламенты в правильном положении, которое оптимальным образом обеспечивает их взаимный контакт, взаимодействие и взаимное скольжение.
Мышечное сокращение вызывается резким повышением концентрации ионов Са2+ в области миофиламентов и включает несколько этапов.

А. Связывание ионов Са2+ с тропонином и освобождение активных центров на молекуле актина. При этом тропонин изменяет свою конформацию, смещает молекулы тропомиозина и открывает активные центры (участки связывания миозина) на молекуле актина.

Б. Связывание миозина и актина (формирование поперечных мостиков). Миозиновые головки связываются с активными центрами на молекуле актина, формируя мостики, расположенные перпендикулярно продольной оси нити. Менее чем через 1 мс после, этого под влиянием актомиозинового комплекса происходит гидролиз АТФ и отщепление его продуктов (АДФ и неорганического фосфата).

В. Размыкание мостика. Связывание новой молекулы АТФ с мостиком вызывает его отделение от тонкого филамента. Мостик размыкается, возвращаясь в прежнее положение относительно миозиновой нити и может прийти в замыкание со следующим активным центром на тонкой. Каждый цикл замыкания-размыкания сопровождается расщеплением молекулы АТФ. При сокращении мышцы не происходит одновременного замыкания всех мостиков - их число нарастает по ходу его развития. При последующем расслаблении мышцы число мостиков снижается.
Изменение длины саркомера при сокращении является результатом относительного продольного смещения толстых и тонких нитей. При этом ширина A-диска не меняется; по мере проникновения в него тонких нитей происходит укорочение I-диска; соответственно значительно сужается Н-полоска.

Расслабление после мышечного сокращения происходит в результате снижения концентрации Са2+ в области саркомера, которое вызывает отщепление Са2+ от ТnС-субъединицы троионина и возвращение трононина в первоначальное конформационное состояние. Нити тропомиозина при этом вновь закрывают активные центры на молекулах актина, что обусловливает прекращение циклического образования мостиков.
перейти в каталог файлов

Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей

Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей