Главная страница
Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
qrcode

Аэродинамика самолета Боинг-737 (300 900)


НазваниеАэродинамика самолета Боинг-737 (300 900)
АнкорAerodinamika-737.doc
Дата13.01.2017
Размер2.55 Mb.
Формат файлаdoc
Имя файлаAerodinamika-737.doc
ТипДокументы
#4962
страница6 из 6
КаталогОбразовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
1   2   3   4   5   6

Располагаемая дистанция взлета



В располагаемую дистанцию взлета (takeoff field length) входит рабочая длина взлетно-посадочной полосы с учетом концевой полосы безопасности (Stopway) и полосы, свободной от препятствий (Clearway).

Располагаемая дистанция взлета не может быть меньше любой из трех дистанций:

1. Дистанции продолженного взлета от начала движения до набора высоты условного препятствия (screen height) 35 футов и безопасной скорости V2 при отказе двигателя на скорости принятия решения V1.

2. Дистанции прерванного взлета, при отказе двигателя на VEF. Где VEF (engine failure) – скорость в момент отказа двигателя, при этом предполагается, что пилот распознает отказ и выполнит первое действие по прекращению взлета на скорости принятия решения V1. На сухой ВПП не учитывается влияние реверса работающего двигателя.

3. Дистанции взлета с нормально работающими двигателями от начала движения до набора высоты условного препятствия 35 футов, умноженной на коэффициент 1,15.

В располагаемую дистанцию взлета входят рабочая длина ВПП и длина концевой полосы безопасности (Stopway).
Длину полосы, свободной от препятствий (Clearway), разрешается прибавлять к располагаемой дистанции взлета, но не более половины воздушного участка траектории взлета от точки отрыва до набора высоты 35 футов и безопасной скорости.
Если мы прибавляем к длине ВПП длину КБП, то мы можем увеличить взлетный вес, при этом скорость принятия решения увеличится, для обеспечения набора высоты 35 футов над концом КБП.

Если мы используем полосу свободную от препятствий, то мы также можем увеличить взлетный вес, но при этом скорость принятия решения уменьшится, поскольку нам необходимо обеспечить остановку самолета в случае прерванного взлета с увеличенным весом в пределах рабочей длины ВПП. В случае продолженного взлета в этом случае самолет наберет высоту 35 футов за пределами ВПП, но над полосой, свободной от препятствий.

Минимальная эволютивная скорость разбега



Это земная индикаторная скорость в ходе разбега, при которой в случае внезапного отказа критического двигателя, возможно сохранять управление самолетом, используя только руль направления (без ис­пользования управления передним колесом шасси) и сохранять поперечное управление в такой степени, чтобы удерживать крыло в близком к горизонтальному положении для обеспечения безопасного продолжения взлета. VMCG не зависит от состояния ВПП, поскольку при ее определении не учитывается реакция ВПП на самолет. В таблицах представлены VMCG в узлах для взлета с двигателями с тягой 22К и 20К соответственно. Где Actual OAT- температура наружного воздуха, а Press ALT- превышение аэродрома в футах. Приписка снизу касается взлета с выключенными отборами воздуха от двигателей (no engine bleeds takeoff), поскольку тяга двигателей возрастает, то возрастает и VMCG.



Взлет с отказавшим двигателем может быть продолжен лишь в случае, если отказ двигателя произойдет при скорости  VMCG.
Боинг опубликовал графики зависимости максимально-допустимой взлетной массы, определяемой из ограничений, накладываемых используемой ВПП, в зависимости от длины ВПП, её превышения над уровнем моря и отклонения температуры воздуха от стандартной атмосферы. Они опубликованы в документе “737Airplane Characteristics for Airport Planning” D6-58325-6 October 2005.

Эти графики не учитывают возможности самолета после отрыва от ВПП, поэтому их нельзя использовать для определения взлетной массы.

Тем не менее, знать максимальную массу, ограниченную располагаемой длиной ВПП, полезно.

Например, при взлете с отказавшим антиюзом, Боинг рекомендует максимально-допустимую массу, ограниченную длиной ВПП, уменьшить на 7800 кг для 737-300 или на 7500 кг для 737 (400-500). В данном случае можно воспользоваться данными графиками, если рассчитанная максимальная взлетная масса ограничивается минимально-допустимым градиентом набора высоты (что чаще всего и происходит).
Серым цветом обозначена часть графика, рассчитанная под взлет с закрылками 15 (при данной длине ВПП больший взлетный вес обеспечивается в конфигурации – закрылки 15).

Желтым – где взлет недопустим из-за превышения максимально-допустимой энергии, поглощаемой тормозами в случае прерванного взлета.

На всех графиках условия: штиль, нулевой уклон ВПП, взлет без отбора воздуха от двигателей.


Максимальная взлетная масса (в тоннах) Боинг 737-300 22,0K в зависимости от длины ВПП (в км.), при стандартной атмосфере.

Максимальная взлетная масса (в тоннах) Боинг 737-400 23,5K в зависимости от длины ВПП (в км.), при стандартной атмосфере.


Максимальная взлетная масса (в тоннах) Боинг 737-500 20K в зависимости от длины ВПП (в км.), при стандартной атмосфере.
Минимально-допустимая высота пролета над препятствиями.
Минимально-допустимая высота пролета над препятствиями по «чистой» (net) траектории взлета равна 35 футов.

«Чистая» - это траектория взлета, градиент набора высоты которой уменьшен на 0,8% по сравнению с реальным градиентом для данных условий.

При построении схемы стандартного выхода из района аэродрома после взлета (SID) закладывается минимальный градиент «чистой» траектории 2,5%. Таким образом, чтобы выполнить схему выхода, максимальный взлетный вес самолета должен обеспечить градиент набора высоты 2,5 +0,8 = 3,3%.

Некоторые схемы выхода могут требовать более высокого градиента, что требует уменьшения взлетного веса.

Минимально-допустимый градиент набора высоты.
В соответствии с нормами летной годности FAR 25 (Federal Aviation Regulations) градиент нормируется по трем сегментам:

1. С выпущенными шасси, закрылки во взлетном положении – градиент должен быть более нуля.

2. После уборки шасси, закрылки во взлетном положении – минимальный градиент 2,4%. (Взлетный вес ограничивается, как правило, выполнением данного требования.)

3. В крейсерской конфигурации – минимальный градиент 1,2%.
Взлет с мокрой полосы
При расчете максимально-допустимой взлетной массы, в случае продолженного взлета, используется уменьшенная высота условного препятствия (screen height) 15 футов, вместо 35 футов для сухой ВПП. В связи с этим нельзя в расчет взлетной дистанции включать полосу, свободную от препятствий (Clearway).

При расчетах прерванного взлета разрешается учитывать эффект реверса двигателей.
Взлет с полосы, покрытой слоем осадков (contaminated)
На взлет с ВПП, покрытой слоем осадков (вода, снег, слякоть), накладывается ряд ограничений:

1. Запрещается использовать технологию увеличения градиента набора высоты (improved climb).

2. Запрещается уменьшать режим работы двигателя на взлете, используя технологию имитации температуры наружного воздуха (assumed temperature).

3. Антиюз должен быть включен и исправен.
При движении по ВПП, покрытой слоем осадков, на самолёт действует дополнительная сила сопротивления, вызванная затратой энергии на смещение и разбрызгивание слякоти (воды).

Силу сопротивления слякоти (slush force), можно найти:
F SLUSH = CX SLUSH ½ ρ V2 A;

где CX SLUSH - коэффициент силы сопротивления слякоти, зависящий от конструкции шасси,

ρ – плотность слякоти (0.85 kg/dm3 или 1.65 slugs/ft3),

V – путевая скорость,

А – площадь взаимодействия колёс со слякотью (см. рисунок).



На скорости VHP = 8.63* Tp, где Tp – давление в пневматиках в фунтах на квадратный дюйм (PSI) начинает проявляться явление гидропланирования. Контакт колёс с ВПП уменьшается, что приводит к уменьшению силы сопротивления слякоти.

Степень уменьшения силы сопротивления описывается коэффициентом fHP.

fHP = ((1.6 VHP – V )/ 0.6 VHP)(2.5 V / VHP – 1.5)

На скорости более VHP: F SLUSH = CX SLUSH ½ ρ V2 A fHP;

Сила сопротивления слякоти при подъёме передней стойки ступенчато уменьшается из-за вывода переднего колеса из слоя слякоти и исчезает полностью при отрыве самолёта от ВПП.


На рисунке показано, как уменьшается ускоряющая сила (разница между тягой и суммой сопротивлений) в процессе роста скорости при движении по ВПП покрытой слоем осадков.


Следующий рисунок показывает ускорения на разбеге на скорости 130 узлов в зависимости от состояния ВПП на двух и одном работающем двигателе. Синий и красный столбик соответствуют слою слякоти 6 и 13 мм соответственно.


В случае прерванного взлёта слякоть уменьшает располагаемое ускорение торможения по сравнению с сухой ВПП.

С одной стороны слякоть резко уменьшает сцепление колёс с ВПП, особенно на скоростях возле скорости гидропланирования VHP. С другой стороны слякоть создаёт дополнительное сопротивление, повышающее тормозящую силу.

На следующем рисунке показаны ускорения торможения на сухой полосе и ВПП покрытой слоем слякоти 6 и 13 мм.

При расчете ускорения торможения на сухой ВПП принимаются следующие условия: максимальное торможение колёс, выпущены все интерцепторы, работающий двигатель на режиме прямой тяги - малый газ.

Торможение на ВПП покрытой слякотью: максимальное торможение колёс, выпущены все интерцепторы, работающий двигатель на режиме максимального реверса.


Не пытайтесь взлететь с ВПП покрытой слоем воды или слякоти более 13 мм.

( http://www.smartcockpit.com/pdf/flightops/aerodynamics/4 )

Взлет самолета с использованием неполной взлетной тяги двигателей



В условиях, когда максимально-допустимый взлетный вес значительно превышает фактический, рекомендуется выполнять взлет с неполной взлетной тягой двигателей. Это позволяет повысить надежность работы двигателей, экономить расходы по эксплуатации двигателей, создает меньше шума, способствует комфорту пассажиров за счет более плавного изменения параметров полета, особенно если вскоре после взлета придется переходить в горизонтальный полет. Особенно это желательно делать при взлетах в жаркую погоду, поскольку резко уменьшается вероятность превышения максимально допустимой температуры газов за турбиной (930С) в процессе разгона на взлете.

Существует два способа уменьшения тяги:

- ступенчатый перевод двигателя на нижнюю ступень тяги (derate). CFM 56-3 имеет 4 модификации: В4, В1, В2 и С1 имеющие максимальную статическую тягу соответственно 18,5; 20; 22 и 23,5 тысяч фунтов. Так, если на модификации С1 установить Derate 1, навигационный компьютер (FMC) будет строить расчеты на максимальную тягу 22 тысячи фунтов, а если Derate 2 – то 20 тысяч.

- имитация температуры наружного воздуха(assumed temperature).

Общеизвестно, что с увеличением температуры воздуха максимально-допустимая взлетная масса уменьшается. Это связано в первую очередь с уменьшением располагаемой тяги двигателей. Как и в любой тепловой машине, в реактивном двигателе мощность напрямую зависит от количества тепла переданного рабочему телу (воздуху). Верхний предел температуры газов ограничен прочностью турбины, поэтому при повышении температуры воздуха, входящего в двигатель, разница температур (а значит и мощность) падает.

Кроме этого, при увеличении температуры воздуха падает его плотность, что приводит к увеличению скоростей на взлете и, следовательно, уменьшению допустимого взлетного веса при неизменных параметрах аэродрома вылета.

Метод имитации температуры наружного воздуха состоит в том, чтобы задать FMC такую температуру, при которой фактический взлетный вес являлся бы максимально-допустимым (для всех остальных фактических условий: ВПП, препятствия и т.д.).


Применение данного метода имеет ряд ограничений. Согласно нормам, нельзя уменьшать тягу данным методом более, чем на 25%.

Использование данного метода запрещено, при:

1. Взлете с ВПП, покрытой слоем осадков (contaminated RW).

2. Взлете с попутным ветром.

3. Взлете с выключенными РМС.

4. При неработающей FMC.

5. При ожидаемом сдвиге ветра на взлете.

6. При неработающем антиюзе.
Оба метода уменьшения взлетной тяги не противоречат друг другу и их можно применять одновременно. Вместе с тем есть принципиальное отличие по их влиянию на взлетные характеристики.

При использовании Derate новый установленный максимум тяги нельзя превышать (как будто у вас стоит менее мощный двигатель). В напоминание об этом на индикаторе оборотов N1 опустятся ограничители (bugs).

При использовании assumed temperature пилоты могут в любой момент увеличить тягу до максимальной.

Исходя из этого строится расчет VMCG. Соответственно при использовании assumed temperature - VMCG не меняется, а при использовании Derate – уменьшается за счет уменьшения разворачивающего момента от двигателя, выдающего меньшую тягу.

Данное свойство Derate может помочь в увеличении максимально-допустимой взлетной массы при взлетах с коротких ВПП и с ВПП, покрытых слоем осадков. Это происходит потому, что вес в данном случае ограничивается необходимостью на взлете достичь VMCG , а затем при необходимости остановиться в пределах ВПП.
Определение достаточности ускорения разбега.
QRH (Quick Reference Handbook) предписывает командиру экипажа прекратить взлёт до достижения скорости 80 узлов в случае «abnormally slow acceleration». Но нигде не описывается, как определить наступление данного события. (В качестве примера можно привести катастрофу Як-42 в Ярославле 7 сентября 2011 года).

Боинг 737, оборудованный EFIS (Electronic Flight Instrument System), позволяет проконтролировать ускорение разбега. На EADI (Electronic Attitude Director Indicator) индицируется зелёная стрелочка Airspeed Trend Arrow, которая указывает на значение скорости, которую самолёт будет иметь через 10 секунд (при условии неизменности ускорения). Во время разбега можно проконтролировать длину этой стрелки. Поскольку скорость проградуирована через 10 узлов, то удобно за единицу длины стрелки взять эти 10 узлов. Назовём эту единицу X. То есть 1X = 10 knots/10 sec = 0,5144 м/с2.

Длина разбега равна L разб = Vотр 2 / 2 j разб

Преобразовываем формулу для определения потребного ускорения разбега по известным L разб и Vотр. Скорость берём в узлах.
X потр = 0,2572 * (Vотр)2 / L разб
В качестве Vотр можно использовать VR. Выражение 0,2572 * (VR )2 имеет приблизительные значения :



VR (knots)

140

150

160

170




5000

5800

6600

7400


Осталось поделить эту величину на располагаемую длину разбега в метрах (примерно 2/3 от располагаемой длины ВПП) и получить минимально допустимую величину ускорения на взлёте в единицах длины зелёной стрелочки (X).

Например: располагаемая длина разбега 2900 метров, скорость VR 150 узлов, (5800 : 2900 = 2) значит, после выхода двигателей на расчётный режим ускорение должно быть не менее 20 узлов за 10 секунд, то есть длина зелёной стрелочки должна быть не меньше двух делений шкалы скорости.


Посадка самолета
Максимально-допустимый посадочный вес определяется на основании располагаемой длины ВПП, соблюдении требований к градиентам набора высоты в конфигурации захода на посадку (approach climb) и в посадочной конфигурации (landing climb). Также он не может быть больше максимального сертифицированного посадочного веса.

Потребная длина ВПП



Исходной точкой в определении потребной длины ВПП выступают продемонстрированные в летных испытаниях посадочные дистанции. Эти дистанции замеряются с высоты 50 футов над ВПП, применяется минимальное выравнивание (касание ВПП 800 – 1100 футов от торца, вертикальная скорость приземления до 8 футов/сек), максимальное использование возможностей тормозов и интерцепторов. Испытания проводятся на сухой ВПП без применения реверса тяги.

(https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/safo/all_safos/media/2006/safo06012.pdf пункт 5 f)

Полученные данные (unfactored distances) публикуются в руководстве по летной эксплуатации вместе с поправочными добавками на изменение веса, высоты аэродрома, ветер и т.д.

Полученные таким образом посадочные дистанции показывают максимально возможные характеристики самолёта, что практически недостижимо в повседневной эксплуатации. Для примера: Шасси самолёта сертифицируются на касание ВПП с вертикальной скоростью 10 футов/сек, что всего на 2 фута/сек меньше, чем вертикальная скорость, используемая при демонстрации посадочной дистанции. (https://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&rgn=div5&view=text&node=14:1.0.1.3.11&idno=14#14:1.0.1.3.11.2.155.15 параграф 25.473 )
Согласно нормам длина сухой ВПП для посадки не может быть меньше опубликованной потребной посадочной дистанции (со всеми добавками), умноженной на коэффициент безопасности 1,67.
Для мокрой ВПП полученный результат увеличивают еще на 15%, т. е. коэффициент безопасности равен 1,67*1,15 = 1,92.
Если на ВПП покрыта снегом (льдом) или жидкими осадками толщиной более 3 мм на площади более 25 %, то она считается «покрытой осадками» (contaminated). В этом случае потребной посадочной дистанцией будет максимальная из двух:

- рассчитанная для мокрой ВПП;

- взятая из QRH раздел Performance Inflight, Normal Configuration Landing Distance для соответствующего Braking Action, умноженная на коэффициент безопасности 1,15.

(https://www.easa.eu.int/rulemaking/docs/crd/part-ops/CRD%20b.3%20-%20Resulting%20text%20of%20Part-CAT%20(A,H)-corrigendum-1.pdf Performance class A CAT. POL. A. 225 (230, 235))

Ограничения по градиенту набора высоты



Соблюдение этих ограничений необходимо для обеспечения безопасного набора высоты в случае ухода на второй круг.

Градиент набора высоты в конфигурации захода на посадку (approach climb) должен быть не менее 2,1% для захода по первой категории и не менее 2,5% при высоте принятия решения менее 200 футов. Он замеряется при закрылках, выпущенных на 5, убранных шасси и одном работающем двигателе на режиме ухода на второй круг.

Градиент набора высоты в посадочной конфигурации (landing climb) должен быть не менее 3,2%. Он замеряется при посадочных закрылках, выпущенных шасси и обоих работающих двигателях на режиме, на который двигатели успеют выйти с режима малого газа на 8-ой секунде, после установки пилотом РУД в положение ухода на второй круг.

Для Боинга 737 более критичным является первое ограничение (approach climb).

Графики для определения максимального approach climb и landing climb масс находятся в руководстве по летной эксплуатации (AFM).

Гидропланирование



На определенной скорости, называемой скоростью гидропланирования (VHP), самолет, движущийся по мокрой ВПП, давлением воды на пневматики приподнимается над ВПП. При этом самолет теряет возможность управляться и тормозиться с помощью колес. Скорость VHP зависит от давления воздуха в пневматиках. Испытания показали, что минимальная VHP = 8.63* Tp, где Tp – давление в пневматиках в фунтах на квадратный дюйм (PSI). Для справки 1PSI = 0,07 кг/см2.


Серии с-та

Основные стойки

VHP

Носовая стойка

VHP

100-200

96 - 183psi

84 – 116 узлов

125 - 145psi

96 – 104 узлов

300-500

185 - 217psi

118 – 128 узлов

163 - 194psi

111 – 121 узлов

600-900

117 - 205psi

93 – 123 узлов

123 - 208psi

95 – 124 узлов



На фото повреждение пневматика Боинга 737-300 авиакомпании Webjet после посадки в условиях сильного дождя из-за гидропланирования 8 сентября 2011 года. (https://avherald.com/h?article=442bd0e6&opt=0)
Тормозная система самолёта оборудована системой автоматического торможения. Она имеет 5 режимов работы: RTO, 1, 2, 3 и МАХ.

Режим RTO предназначен для автоматического торможения при прерванном взлёте. Чтобы произошло включение режима необходимо, чтобы:

- путевая скорость самолёта больше 88 узлов

-самолёт находился на земле

- оба РУД были в положении малого газа

При этом во все четыре тормоза подаётся полное давление торможения (3000 psi), темп торможения не контролируется. Режим продолжается до полной остановки или вмешательства пилота или отказа системы.
Остальные режимы предназначены для посадки. Чтобы режим включился необходимо, чтобы колёса раскрутились до скорости не менее 70 узлов и оба РУД были в положении малого газа. При этом в тормоза с темпом 100 psi/сек подаётся давление и контролируется темп торможения путём регулирования давления в тормозах.

Заданные темпы торможения для соответствующего режима:

1 – 4 фута/с2; 2 – 5 футов/с2; 3 – 7,2 фута/с2; МАХ – 14 футов/с2(при скорости более 80 узлов) и 12 футов/с2 (при скорости менее 80 узлов).

Контроль за работой автомата торможения можно выполнять по длине зелёной стрелочки на линейке скоростей (см. «Определение достаточности ускорения разбега»). Длина должна быть: 1 – 2,4; 2 – 3,0; 3 – 4,3 делений шкалы скорости для соответствующего режима автоматического торможения. (Вся видимая линейка скоростей имеет длину по 40 узлов вверх и вниз, поэтому ускорения более 40 узлов/10сек (4 деления) по длине стрелки проконтролировать невозможно.)
В нижеприведенной таблице приведены дистанции торможения для разных скоростей захода на посадку VREF и разных положений системы автоматического торможения. В дистанцию торможения включены 300 метров воздушного участка от торца ВПП до касания и дистанция торможения с соответствующим темпом от VREF до скорости руления 30 узлов.


Autobrake

1

2

3

120 узлов

1820 м

1520 м

1150 м

130 узлов

2090 м

1740 м

1300 м

140 узлов

2380 м

1970 м

1460 м

150 узлов

2700 м

2220 м

1640 м


Важно: На скользкой ВПП система автоматического торможения может не справиться с выдерживанием заданного темпа торможения, поэтому посадочную дистанцию следует рассчитывать на основании данных в QRH в разделе Performance Inflight!
При выполнении посадки самолёта очень важной характеристикой самолёта является расстояние от глаз лётчика до линии колёс основных стоек шасси.

На Боинге 737-500 лётчик сидит впереди основных стоек на расстоянии 12,55 метра, на 737-800 на расстоянии 17,18 метра.

В процессе выравнивания и последующего снижения самолёта вплоть до касания ВПП угол тангажа самолёта, как правило, непрерывно увеличивается. При этом колёса «провисают» относительно уровня глаз лётчика.

∆h = b tg ∆θ, где b - расстояние от лётчика до основных шасси, ∆θ – изменение угла тангажа.

Степень изменения угла тангажа на посадке зависит от многих факторов. В первую очередь от темпа выравнивания и гашения поступательной скорости.

При большом расстоянии b и быстром уменьшении скорости на посадке кабина лётчиков может подниматься над ВПП, в то время, как основные стойки будут снижаться со значительной вертикальной скоростью.

В Flight Crew Training Manual NG указаны следующие средние значения угла тангажа на посадке: торец ВПП +2 ÷ +4°, касание ВПП +4 ÷ +7°, время полёта от торца ВПП до посадки 4 ÷ 8 секунд при длине воздушного участка 1000 ÷ 2000 футов, соответственно.

Если взять изменение тангажа 3°, то шасси опустится относительно пилотской кабины на

tg3° × 17,18 = 0,9 метра. Если это произойдёт за 4 секунды, то прирост вертикальной скорости составит 0,9 : 4 = 0,225 м/с. Если пилотская кабина в момент касания не будет снижаться, то перегрузка на касании ВПП составит порядка 1,1.

В Flight Crew Training Manual NG указана нормальная вертикальная скорость касания ВПП 150 футов/минуту = 0,75 м/с.

Устойчивость и управляемость
Самолет, в отличие от наземных и надводных средств передвижения, в полете имеет шесть степеней свободы. (Также, как и космические аппараты и подводные лодки). Это значит, что он может одновременно перемещаться вдоль и вращаться вокруг трех взаимно перпендикулярных осей.

Для обеспечения равномерного прямолинейного движения необходимо, чтобы все силы и моменты, действующие на самолет, были взаимно уравновешены. Выполнение этого условия требует, чтобы сумма проекций сил и моментов на оси координат была равна нулю.

Поскольку самолет симметричен относительно плоскости, создаваемой продольной и нормальной осями, то устойчивость и управляемость самолета делят на два большие раздела – продольную и боковую.

К продольному движению относят перемещение вдоль продольной и нормальной оси и вращение относительно поперечной. В этом движении участвуют самые большие из сил, действующих на самолет: подъемная сила, сила тяжести, сила тяги двигателей и лобового сопротивления. Любая несбалансированность вызывает сильное изменение траектории самолета от заданной. Поэтому управление самолетом в продольном движении, обеспечение продольного равновесия является наиболее важным.

Перемещение самолета вдоль поперечной оси и вращение относительно продольной и нормальной осей относят к боковому движению самолета. Оно считается менее важным, тем не менее, недостатки в системе управления именно этим каналом на Боинге 737, привели к серии катастроф и последующей модернизации системы управления.

Боковая устойчивость и управляемость



Боинг 737 имеет излишнюю степень поперечной статической устойчивости (mxβ), особенно с отклоненной механизацией крыла.

Поперечной устойчивостью самолета называется его способность крениться в сторону, обратную скольжению. Основную роль в создании кренящего момента играет стреловидное крыло: при возникновении скольжения у выдвинутого вперед полукрыла угол стреловидности как бы уменьшится на величину угла скольжения, а у отстающего увеличится на такую же величину.



Такое изменение углов стреловидности полукрыльев приведет к изменению их несущих свойств так, что у выдвинутого вперед полукрыла увеличится коэффициент подъемной силы, а у отстающего – уменьшится. Возникнет кренящий момент в сторону, обратную скольжению. Возникающий момент частично компенсируется, возникающим при вращении, демпфирующим моментом крена (mxωx), но все равно вызывает энергичное кренение.

Таким образом, самолет чрезмерно реагирует креном на боковые порывы ветра, что усложняет пилотирование в условиях порывистого бокового ветра.
Допустимая степень боковой асимметрии самолёта (на “NG”) определена в документе Fault Isolation Manual.
В крейсерском полёте (М 0.78, Эшелон ≥ 370), для балансировки самолёта без крена и скольжения, отклонение руля направления не должно превышать 0,5 unit, а отклонение штурвального колеса не более 0,75 unit. Балансировка выполняется по следующей методике: Обеспечить балансировку топлива с погрешностью не более 68 кг и симметричность тяги двигателей с погрешностью не более 1% N1. Автомат тяги выключить. При включенном автопилоте в режиме выдерживания заданного курса (HDG SEL) отклонением рукоятки руля направления обеспечить полёт без крена, больше руль направления не трогать. Затем отключить автопилот и снять усилия со штурвального колеса отклонением триммера элеронов, сохраняя полёт без крена на постоянном курсе. Полученные отклонения руля направления и штурвального колеса зафиксировать.

Аналогичная проверка выполняется на скорости 250 узлов, высоте 10 – 17 тысяч футов. При этом допустимые отклонения руля направления и штурвальной колонки равны 0,75 unit.

На этой же высоте выполняется проверка балансировки с выпущенными закрылками на 1, 15 и 40 градусов на соответствующих скоростях.

При этом требуемые отклонения руля направления не должны превышать 1 unit, а отклонения штурвального колеса на закрылках 1 и 15 - не более 1 unit и на закрылках 40 – не более 1,3 unit.

При изменении положения закрылков в диапазоне 1 - 15 градусов изменение положения штурвального колеса не должно превышать 1 unit, а в диапазоне 15 – 40 градусов не более 1,4 unit.
Рассмотренный выше метод балансировки обеспечивает полную балансировку по путевому и поперечному каналу, но требует отключения автопилота. Поэтому эта техника триммирования бокового канала называется у Боинга «альтернативной».

Рекомендованная техника триммирования аналогична альтернативной, но отклонением руля направления выравнивается штурвальное колесо, а не крен самолёта. При этом, если у самолёта есть поперечная асимметрия, то он будет лететь с креном и скольжением. Как правило, они незначительны и не влияют на расход топлива.

Рекомендованная техника триммирования значительно проще по исполнению. Поскольку штурвальное колесо триммируется в нейтраль, то при отключении автопилота не будет возникать разбалансировки по крену.

При альтернативном триммировании необходимо после каждого триммирования рулём направления выключать автопилот и снимать усилия со штурвального колеса. В дальнейшем, при работе автопилота и изменении режима полёта/положения механизации могут опять накопиться усилия в канале крена. При отключении автопилота возможен «рывок» по крену.


Демпфер рыскания (YawDamper)



Для улучшения характеристик бокового движения самолета и недопущения незатухающих колебаний типа «голландский шаг» в системе управления рулем направления установлен демпфер рыскания.

«Голландский шаг» (Dutchroll) появляется в результате относительно слабой путевой устойчивости и чрезмерной поперечной устойчивости самолета. Когда самолет вращается относительно продольной оси, самопроизвольно возникает скольжение в сторону опускающегося крыла, за счет возникающей боковой составляющей силы тяжести. Это сразу же приводит к возникновению момента поперечной устойчивости Mxβ , который стремится уменьшить возникший крен. На самолетах с высокой поперечной устойчивостью он может быть значительным.

В то же время возникает и момент путевой устойчивости Myβ , стремящийся развернуть нос самолета в сторону возникшего скольжения. Поскольку на многих самолетах путевая устойчивость значительно слабее поперечной, то восстановление скольжения отстает от восстановления крена. Самолет по инерции проскакивает положение без крена и начинает крениться в противоположную сторону. Таким образом, самолет без вмешательства в управление будет совершать незатухающие колебания по крену и скольжению.


Демпфер рыскания искусственно увеличивает путевую устойчивость и таким образом предотвращает колебания.

Чувствительным элементом демпфера рыскания является двухстепенной гироскоп, реагирующий на угловую скорость ωy , относительно нормальной оси Y. Этот сигнал фильтруется и усиливается в зависимости от скорости полета по сигналу от компьютера, рассчитывающего высотно-скоростные параметры (AirDataComputer). Далее сигнал поступает на управляющий золотник демпфера (см. схему главного рулевого привода РН в разделе «Путевое управление»). Золотник управляет перемещением исполнительного привода демпфера, что смещает центр вращения первичного и вторичного суммирующих рычагов и, таким образом, суммируется с перемещением педалей от летчиков и приводит к перемещению штока главного рулевого привода руля направления.

При этом перемещения исполнительного привода демпфера на педали не передаются, и летчик не может тактильно ощущать работу демпфера. Для контроля за его работой выведен индикатор, показывающий отклонения исполнительного привода демпфера.

Удобный контроль на рулении: планка первоначально должна отклониться в сторону противоположную развороту. Затем планка может возвращаться в нейтраль или даже отклоняться в сторону разворота. Это объясняется сложным законом отклонения руля направления, когда руль реагирует на быстроизменяющуюся составляющую угловой скорости разворота и не реагирует на постоянную её составляющую.

При нормальной работе демпфера в полёте отклонения планки индикатора практически незаметны.

На самолетах новой комплектации с установленным интегрированным узлом связи (IFSAU) между САУ и самолетом (см. Система автоматического управления), при выпущенных закрылках сигнал демпфера усиливается на 29% для противодействия усиливающейся поперечной устойчивости. Кроме того, на 50% гасятся сигналы с частотой 8 герц для уменьшения вибраций и улучшения комфорта пассажиров.

Координированное скольжение



Координированное скольжение – это контрольный маневр, выполняемый при летных испытаниях самолета. Он позволяет выявить особенности боковой устойчивости и управляемости самолета, в частности взаимную эффективность поперечного и путевого управления. При его выполнении выдерживают прямолинейный полет на постоянной высоте и скорости с постепенным ступенчатым отклонением руля направления. Чтобы возникающее при этом скольжение не уводило самолет с прямолинейной траектории, создают крен в противоположную сторону. Таким образом, боковая составляющая силы тяжести будет компенсировать боковую силу от скольжения. В данном маневре путевой канал как бы борется с поперечным. Если нет прочностных ограничений, то отклонения рулей выполняются до полного расхода. Как правило, первыми становятся на упор педали, а поперечное управление ещё имеет запас. Но бывает и наоборот.

В отчете по расследованию катастрофы Боинга 737-200 3 марта 1991 года в районе Colorado Springs NTSB опубликовало результаты выполненных координированных скольжений на скорости 150-160 узлов в различной конфигурации закрылков от 40 до 10 градусов.

Рассматривался случай полного отклонения (непроизвольного увода) руля направления вправо на 25 градусов.


Угол отклонения

руля направлен.

Угол отклонения

закрылков

Угол скольжения

Угол отклонения

колеса штурвала

Угол крена

25 прав

40

14 прав

35 лев

18 лев

25 прав

30

15 прав

44 лев

17 лев

25 прав

25

15 прав

68 лев

16 лев

23 прав

15

17 прав

107 лев

23 лев

21 прав

10

16 прав

107 лев

19 лев

25 прав

10

13 прав

107 лев

40 прав


Таким образом, из таблицы видно, что увод руля направления в крайнее положение не опасен при закрылках, выпущенных в положение от 40 до 25 градусов. Кренящий момент от возникшего скольжения можно будет парировать отклонением штурвала на угол, соответственно от 35 до 68 градусов. Объясняется это резко возросшей эффективностью отклоняемых в полете интерцепторов (flightspoilers), которые срывают поток с закрылка на той половине крыла, которая должна опускаться.

При угле выпуска закрылков менее 25 градусов полного отклонения штурвала не хватает для парирования увода руля направления (на скорости эксперимента – 150-160 узлов). Так при закрылках 15 балансировка была достигнута только при РН=23 градуса, при закрылках 10 - при РН=21 градус.

Нижняя строчка таблицы не относится к координированному скольжению. В данном случае балансировка была достигнута при выполнении виража вправо с креном 40 градусов. Штурвал при этом был отклонен влево на полный угол, а уменьшение угла скольжения с 16 до 13 градусов достигается за счет появления демпфирующего путевого момента МYy от угловой скорости разворота.

Также в этом отчете есть информация о том, что поведенные исследования показали, что при уменьшении скорости до определенной величины, эффективности поперечного управления, с закрылками, выпущенными на 1 градус, становится недостаточно для парирования увода руля направления в крайнее положение. Данная скорость названа «скорость критической точки»(crossover airspeed).

Система автоматического управления
Система автоматического управления самолетом (AFCS) состоит из трех независимых систем: цифровой системы управления полетом (DFCS), демпфера рысканья (см. Боковая устойчивость и управляемость) и автомата тяги. Эти системы обеспечивают автоматическую стабилизацию самолета по тангажу, крену и скольжению и управление самолетом по сигналам радионавигационных средств, бортового навигационного компьютера (FMC), компьютера высотно-скоростных параметров (ADC) и стабилизацию курса.

Связь между цифровой системой управления и самолетом осуществляет в зависимости от комплектации самолета узел связи (AFC) или интегрированный узел связи (IFSAU). В зависимости от этого несколько меняется работа демпфера рысканья.
Автоматическое управление самолетом осуществляется посредством руля высоты и элеронов. На самолётах модификации «NG» может быть установлено автоматическое управление рулём направления.
Также происходит автоматическое снятие усилий со штурвала в продольном канале (с возвращением штурвальной колонки в нейтральное положение) путем перестановки стабилизатора. Автоматического снятия усилий в поперечном канале не происходит, поэтому запрещено пользоваться механизмом триммерного эффекта элеронов при включенном автопилоте. В этом случае рулевая машина автопилота будет пересиливать пружину загрузочного механизма (aileron feel and centering unit) и, при отключении автопилота, самолёт начнёт неожиданно для лётчика крениться.

Похожий случай произошел 6 сентября 2011 года в авиакомпании ANA, правда там лётчик непроизвольным отклонением механизма триммерного эффекта руля направления разбалансировал путевой канал, что привело к отключению автопилота и резкому кренению самолёта.
В полёте, при включенном автопилоте, штурвальная колонка и рулевое колесо должны стоять нейтрально. Это говорит об отсутствии усилий в проводке руля высоты и элеронов. Отклонение штурвальной колонки от нейтрали является признаком отказа управления стабилизатором или его ухода (runaway).

Отклонение рулевого колеса свидетельствует о поперечной (путевой) несимметрии самолета, неравномерной выработке топлива или несимметричной тяге двигателей. Техника триммирования бокового канала описана в разделе «боковая устойчивость и управляемость».
В случае полета с несимметричной тягой двигателей пилот должен отклонением педалей самостоятельно управлять путевым каналом. В противном случае точность выдерживания заданных параметров полета не гарантирована.
Отключение автопилота (DFCS) индицируется миганием красных ламп-кнопок «A/P P/RST» и звуком сирены, а отключение автомата тяги – только красными лампами-кнопками «A/T P/RST». Согласно отчета AAIB (Air Accidents Investigation Branch) о расследовании инцидента с Боингом 737-300 авиакомпании Thomsonfly, произошедшего в Bournemouth (Великобритания) 23 сентября 2007 года, отсутствие звуковой сигнализации отключения автомата тяги явилось причиной, способствующей инциденту. Во время захода на посадку при работе двигателей на режиме «Малый газ» автомат тяги отключился, что осталось незамеченным экипажем. На глиссаде снижения самолет потерял скорость до 82 узлов (на 20 км/час ниже VREF) и вышел на режим сваливания.
Кроме управления самолётом цифровая система управления полетом (DFCS) выдаёт на индикацию лётчикам отклонения директорных планок по крену и тангажу. Эти отклонения эквивалентны командам на рулевые машины автопилота. Поэтому, когда автопилот выключен, а лётчик пилотирует самолёт по директорным планкам, то он выполняет работу рулевой машины автопилота. Пилотирование по директорам значительно повышает точность выдерживания заданных режимов, но отучает лётчика от сканирования и анализа показаний приборов, то есть способствует деградации лётных навыков. Этому способствует политика авиакомпаний, которые во имя комфорта пассажиров запрещают своим пилотам летать с выключенными директорами даже в простых метеоусловиях. Проблема потери лётным составом навыков управления самолётом при выключенных средствах автоматизации неоднократно поднималась на международных конференциях по безопасности полётов, но воз и ныне там.

Полет самолета при несимметричной тяге
Рассмотрим поведение самолета сразу после отказа одного из двигателей и потребное управление (балансировку) для обеспечения прямолинейного полета с одним остановленным двигателем.

Пусть отказал левый двигатель. На самолет начнет действовать момент рыскания МУ ДВ, разворачивающий его влево. Возникнет скольжение на правое крыло, следовательно, и момент крена Мх в сторону крыла с остановленным двигателем. На рисунке показано примерное изменение углов скольжения и крена при остановке левого двигателя.



Поскольку поперечная устойчивость велика (особенно с выпущенными закрылками), то накренение будет происходить энергично, так что требуется немедленное вмешательство пилота. Для парирования кренящего момента, при работе двигателя на взлетном режиме, полного отклонения штурвала по крену недостаточно. Необходимо убрать скольжение рулем направления.

Рассмотрим, каковы условия балансировки в длительном полете с одним неработающим двигателем. Проанализируем два специфических случая балансировки в прямолинейном полете с остановленным двигателем: 1) без крена, 2) без скольжения, а также рекомендацию фирмы Боинг.

1. Полет без крена.



Для балансировки без крена требуется создать скольжение на левое крыло. Тогда к моменту от несимметричной тяги Му двиг прибавится момент от скольжения Му . Их уравновешивание требует большого отклонения руля направления. Боковые силы от руля направления Z рн и от скольжения Z будут действовать в противоположные стороны и при некотором угле скольжения уравновесятся. Поперечный момент Мх будет компенсироваться моментами от руля направления Мх рн и элеронов Мх элер.

Казалось бы, для пилота прямолинейный полет без крена является наиболее приемлемым, но из-за большого потребного угла отклонения руля направления возрастает сопротивление самолета. Это ухудшает возможности самолета, особенно при отказе двигателя на взлете с большой массой и при высоких температурах.

Заметим, что хотя полет происходит здесь со скольжением, но шарик указателя скольжения расположится строго по центру. Дело в том, что аэродинамические силы в этом случае располагаются в плоскости симметрии самолета. Вообще говоря, данный прибор не является указателем скольжения, а является указателем боковой перегрузки. Боковая перегрузка возникает от нескомпенсированной аэродинамической силы Z, которая уравновешивается боковой составляющей силы тяжести G*sin при полете с креном или центробежной силой при развороте самолета.

2. Полет без скольжения.



Разворачивающий момент от двигателя Му двиг балансируется моментом от руля направления Му рн. Боковая сила Z рн уравновешивается боковой составляющей силы тяжести G*sin, при создании крена на правое крыло. Поперечный момент от руля направления Мх рн уравновешивается моментом от элеронов Мх элер. Заметим, отклонение элеронов в противоположную сторону, по сравнению с балансировкой без крена. Шарик в данном случае будет отклонен в сторону опущенного крыла, хотя скольжение будет отсутствовать.

Данный режим балансировки наиболее выгоден для энергетики самолета, поскольку обеспечивается минимальное сопротивление. Но точное выдерживание режима проблематично. Во-первых, у пилотов нет индикации угла скольжения, во-вторых, при изменении тяги работающего двигателя меняется разворачивающий момент, значит меняется потребное отклонение руля направления, соответственно меняется боковая сила руля направления, а значит и требуемый угол крена для его компенсации. Руководства по летной эксплуатации советских самолетов давали пилотам приблизительную цифру крена 3 - 5 на работающий двигатель.

Боинг дает другой критерий управления. Рассмотрим балансировочную диаграмму при отказе левого двигателя.



На ней цифрами 1 и 2 показаны рассмотренные случаи балансировки без крена и без скольжения. Вместе с тем существует бесконечное множество других балансировочных положений. Боинг рекомендует пилотам балансировать самолет с нулевым отклонением элеронов (level the control wheel). Пишется, что при этом наблюдается небольшой крен на работающий двигатель и шарик немного отклонен в ту же сторону. Как видно из балансировочной диаграммы, это положение является чем-то средним между двумя рассмотренными случаями балансировки. Его удобно выдерживать, поскольку для контроля «горизонтальности» штурвала необязательно даже смотреть в кабину и можно контролировать правильность положения руля направления тактильными ощущениями руки. Какая половинка штурвала опускается, значит в такую же сторону надо отклонить педали для балансировки. Точно такая же техника пилотирования при включенном автопилоте, поскольку педали от автопилота не управляются.

Отказобезопасность


Отказобезопасностью называется анализ влияния неисправностей на поведение самолета и возможность безопасного завершения полета.

При расследовании катастрофы 3 марта 1991 года NTSB оценил требуемые отклонения штурвала по крену для парирования следующих неисправностей системы управления:
1. Секция выдвижного предкрылка или предкрылок Крюгера не выпустились. В условиях турбулентности данный отказ, скорее всего, останется незамеченным.
2. Отказ демпфера рысканья с уводом руля направления на 2 градуса. (Максимальный угол отклонения руля направления от демпфера рысканья на сериях (300-500) - 3 градуса). Парирование требует отклонения штурвала на 20 градусов.
3. «Всплывание» интерцептора-элерона.

(Опущенный интерцептор удерживается в полете гидросистемой. Если система удержания интерцептора отказывает, то он, за счет разрежения над крылом, может приподняться над поверхностью крыла. Это называется «всплыванием».)

Парирование такого отказа требует отклонения штурвала на 25 градусов.
4. Заедание золотника рулевого привода руля направления, приведшее к отклонению руля на 10,5 градусов. Требует отклонения штурвала на 40 градусов.
5. Парирование асимметричной тяги двигателей с уводом руля направления на 8 градусов требует 30 градусов отклонения штурвала.
Общий вывод был сделан, что данные отказы не могут являться причиной потери управляемости самолета.


Недостатки самолета



С точки зрения вопросов, касающихся аэродинамики самолет имеет следующие недостатки:
1. Несмотря на то, что самолет оборудован флюгарками, информация о текущем угле атаки пилотам не выдается (за исключением некоторых комплектаций самолетов серий 600 и далее). Подача такой информации значительно бы помогла в случаях ненадежной работы компьютера высотно-скоростных параметров, ошибочного ввода информации о весе самолета в навигационный компьютер (FMC), выводе самолета из сложного положения, заходе на посадку с различными отказами механизации и т. п.
2. В законе управления двигателя отсутствует прямое ограничение режима двигателя при достижении максимально допустимой температуры газов за турбиной. Поэтому в процессе роста скорости на взлёте температура газов за турбиной непрерывно увеличивается и, при взлетах в жаркую погоду с большими взлетными весами, может превысить максимально допустимое значение. Это накладывает дополнительную нагрузку на экипаж по дополнительному контролю и ручной корректировке режима двигателей на разбеге и в процессе первоначального набора высоты. Что не способствует безопасности полета.
3. Самолет имеет чрезмерную поперечную устойчивость, особенно при выпущенных закрылках. Это усложняет его пилотирование и причиняет неудобства пассажирам на взлёте и посадке в условиях порывистого бокового ветра и при полете в неспокойной атмосфере.

В качестве примера по данному пункту подходит инцидент с Боингом 737-500, авиакомпании Международные авиалинии Украины 13 февраля 2008 года.

Выполняя посадку в Хельсинки при сильном порывистом боковом ветре, командир экипажа чрезмерно энергично парируя крен, возникший от порыва ветра, допустил касание законцовкой крыла о ВПП.

На самолётах модификации NG с winglet данный недостаток ещё более усилился.

По этой же причине самолет резко реагирует креном на возникающее скольжение при отказе двигателя на взлете. При этом полного отклонения штурвала по крену не достаточно для парирования кренящего момента и необходимо без задержки отклонить руль направления для парирования возникающего скольжения. В условиях видимости естественного горизонта эта задача решается, как правило, без проблем. Но в облаках или при ограниченной видимости решение этой задачи требует специальной тренировки и достаточно непросто для пилотов привыкших пилотировать по советской системе индикации – вид с земли на самолет.

4.  Согласно отчета AAIB (Air Accidents Investigation Branch) о расследовании инцидента с Боингом 737-300 авиакомпании Thomsonfly, произошедшего в Bournemouth (Великобритания) 23 сентября 2007 года, полного отклонения руля высоты не хватило для парирования кабрирующего момента от двигателей. Выводя самолет из режима сваливания, экипаж вывел двигатели на режим, превышающий полную взлетную мощность. При этом тангаж самолета увеличился до 44 градусов, несмотря на то, что командир полностью отклонил штурвальную колонку от себя. В данном случае необходима помощь стабилизатора.
5. На самолётах модификации NG крейсерское число М полёта увеличилось и вплотную приблизилось к MMO. Однако повышенная инертность самолёта (за счёт большей массы) и алгоритм работы автомата тяги таковы, что возникает реальная угроза непреднамеренного превышения MMO в крейсерском полёте в неспокойной атмосфере при усилении встречной составляющей скорости ветра.
6. Сервокомпенсатор руля высоты (elevator tab), предназначенный для уменьшения усилий на штурвале при прямом (безбустерном) управлении самолётом, может провоцировать автоколебания проводки управления. Данные случаи отмечались 1 марта 2010 года https://aviacom.ucoz.ru/publ/boeing_737/nedavnie_incidenty_s_boingom_737/1_marta_2010_goda_brjussel/8-1-0-17

и 2 апреля 2010 года

https://aviacom.ucoz.ru/publ/boeing_737/nedavnie_incidenty_s_boingom_737/povtornaja_proverka_servokompensatorov/8-1-0-15 .

Также вибрация сервокомпенсатора рассматривается, как одна из возможных причин катастрофы Боинга 737-800 в Бейруте 25 января 2010 года

https://aviacom.ucoz.ru/publ/aviakatastrofy/nedavnie_aviakatastrofy/katastrofa_boinga_737_800_v_bejrute_25_janvarja_2010_goda/7-1-0-53
Вопросы и замечания по тексту пишите: vaneev_alex@hotmail.com
1   2   3   4   5   6

перейти в каталог файлов

Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей

Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей