Главная страница
qrcode

Новая-система-земледелия.-И.Е.Овсинский. Овсинский И. Е. Новая система земледелия. 1


НазваниеОвсинский И. Е. Новая система земледелия. 1
АнкорНовая-система земледелия.-И. Е.Овсинский.pdf
Дата13.01.2017
Размер0.61 Mb.
Формат файлаpdf
Имя файлаNovaya-sistema-zemledelia_-I_E_Ovsinskiy.pdf
оригинальный pdf просмотр
ТипДокументы
#4595
страница2 из 6
Каталог
1   2   3   4   5   6
2.
Питаниерастений. Вступлениекновымначаламобработки
Растения, которые мы собираемся возделывать, только тогда хорошо вырастут и дадут желаемый урожай, когда мы, кроме учета их деятельной самобытности, о чем мы говорили в первой главе, создадим для них в почве соответствующей обработкой изобилие нужной им пищи в легко усвояемом корнями состоянии. Иначе растения будут развиваться плохо и вместо ожидаемой пользы принесут убытки.
Теперь мы знаем, что питательные вещества культурных растений имеют неорганическую природу. Группа же растений, лишенных хролофилла, например грибы, питаются органическими остатками. Другие взгляды на питание растений господствовали до 1840 года, то есть до того времени, когда появился труд Либиха под названием «Химия в применении к земледелию».
Плодородность перегнойных почв навела на мысь предшественников Либиха, что возделываемые растения питаются исключительно остатками растений и животных.
Самым видным представителем этой теории, называемой гумусной (гнилостной), был известный в земледельческих кругах мира Альбрехт Тэф. Последователи гумусной теории не обратили внимания на то, что первые растения, которые появились на земле, не имели в своем распоряжении органических остатков. Уже одно это подтачивало теорию перегноя, которая и пала под ударами натуралистов новой школы.
По выходу в свет сочинения Либиха, появились труды Вегмана и Подосдорфа, как результат конкурса, назначенного академией наук в Геттингене. Этим ученым удалось вырастить растения в песке, лишенном перегноя, исключительно при помощи минеральных веществ. Такие же результаты получились на почвах, искусственно созданных Буссингаультом, Сальм-Горетмаром, Гельригелем и др.
Последний же удар гумусной теории нанесла водная культура. Этот способ применялся еще в конце 18-го столетия. Нынешние же талантливые химики Иоббс,
Гельригель, Раудин, Стогманн, Кнопп, Сакс и другие при помощи водной культуры окончательно выяснили вопрос питания растений. В данном случае не трудно было точно обозначить количество и качество прибавляемых к дистиллированной воде питательных веществ, что сделать с песком не совсем удавалось.
Опыты показали, что растения можно довести до плодоношения, если поместить их в дистиллированную воду, содержащую в 1 л 0,5 -1,0 г смеси из азото-кислого кальция (4 части), фосфорной кислоты, азото-кислого натрия и сернокислого магния (каждого по 1 части).
К этому раствору добавляется фосфорнокислое железо, пока жидкость не станет слегка мутной. Этим способом доводились до полного развития и плодоношения хлебные злаки, картофель, свекла, табак и даже деревца.
Теория Либиха осталась неопровержимой, а теория перегноя пала. Стало аксиомой, что растение может развиваться вполне нормально без добавления органических веществ, состоящих из растительных и животных остатков. Более того, даже были попытки доказать, что органические вещества совсем непригодны для питания растений, содержащих в себе хлорофилл и, что последние могут питаться органическими остатками только после их полного разложения (минерализации). Однако новейшие исследования
(Deherain) показывают, что органические остатки служат пищей для возделываемых растений: свеклы, клевера и др.
Если бы Либих и его последователи ограничились бы раскрытием способа питания растений, то это было бы полезно и для них и для науки. Но в дальнейшей своей деятельности Либих наделал чудовищных ошибок, которые привели всю школу на

Овсинский И.Е. Новая система земледелия.
8 неверный путь, а земледелию принесли неисчислимые потери. Учение Либиха, как правильно утверждает Тиндаль, сделалось для его приверженцев не ясным светом
(pharos), а блуждающим огоньком (ignis fatuns), который повел земледелие окольными путями. С этим блуждающим огоньком наука и по сей день должна вести борьбу – настолько сильно заблуждение, в которое впали последователи минеральной теории.
Фальшивое в своем основании и печальное в своих заключениях учение Либиха напоминает теории средневековых проповедников, о которых упоминает Бокль в
«Истории цивилизации Англии». Проповедники эти учили, что Создатель от века предназначил миллионы людей в ад, и что никакое покаяние, ни посты, ни молитва не избавят осужденных от ада. Суеверные слушатели впадали в заблуждение от этих мрачных проповедников. Подобным образом наши земледельцы до сих пор дрожат перед призраком истощение полей, на которое указал им Либих. Они часто спасаются от грустной перспективы такими средствами, которые вызывают банкротство владельца прежде, чем наступит банкротство его земли.
Рецепты обработки и удобрения, при тщательном их рассмотрении, удивляют своей нелогичностью и дороговизной. К счастью, значительная часть земледельческого люда не знает о Либиховской теории и не перестала хозяйничать так, как хозяйничали их предки. Потому, что иначе хозяйничать и есть хлеб стало уделом исключительно небольшой горстки тех счастливцев, которые бы могли запрягать 3 пары волов в немецкий самоход, а землю посыпать порошками (удобрениями). Однако прежде чем заняться более подробно этим вопросом, мы прежде закончим обзор о питательных веществах для растений.
Химические анализы растений, предпринимаемые с целью исследования их состава, открыли в растениях следующие химические элементы: углерод, водород, кислород, азот, серу, калий, кальций, железо, фосфор, хлор, натрий, кремнекислоту: иногда встречаются также барий, бром, йод, олово, свинец, магний, стронций, цинк, марганец, кобальт, никель, медь.
Некоторые из вышеуказанных элементов находим только в редких случаях, другие же можно найти в каждом растении и даже в каждой его части. К числу самых главных
(первородных) химических элементов растений принадлежат: азот, углерод, кислород, водород, сера, фосфор, кремнезем, хлор, калий, натрий, магний, железо. В отдельных видах растений, или в некоторых их органах можно найти йод, хлор, алюминий и марганец. Другие из вышеупомянутых элементов встречаются очень редко, или весьма в небольших количествах.
Проведенные к настоящему времени опыты с водной культурой показали, что соединения десяти первородных (главных) элементов, являются необходимыми и вполне достаточными для питания растений. Это следующие элементы: кислород, водород, углерод, азот, калий, кальций, магний, железо, сера и фосфор.
Из этих десяти элементов Либих и его последователи признавали самыми главными фосфор и калий. Буссеню же и Нэйон доказали важность азота. Во всяком случае, три эти элемента окончательно признаются всеми как главными элементы растений. Даже такой авторитет, как Грандо, в трудах которого показано громадное значение перегноя для почвы, утверждает, что изобилие азота, фосфора и калия в почве, составляет вопрос жизни самого земледелия. Вот земледельцы и начали тратить миллионы на покупку этих удобрений, желая этим и урожай повысить, и отвратить призрак истощения почвы.
Самым дорогим из этих трех элементов является азот, фунт которого в искусственных удобрениях стоит в 7 раз дороже, чем фосфор. А так как при существующей нерациональной системе обработки земледельцы запада считают необходимым применять искусственное удобрение даже там, где без него можно обойтись, то на покупку удобрений они тратят громадные суммы. Так, например, в 1984 году в Европу привезено одной чилийской селитры 274 219 тонн, на сумму 205 млн. франков. Таким же образом расходовались большие суммы и на покупку других удобрений: азотных, фосфорных, калийных и, наконец, извести.

Овсинский И.Е. Новая система земледелия.
9
Против этого ничего нельзя иметь там, где почва по своей природе вовсе не содержит в себе ни азота, ни фосфора, ни калия, ни кальция. Тогда применения удобрения является необходимостью, против которой никто возражать не станет. Но, в действительности, дело обстоит совсем иначе. Так, например, земля, для которой считают необходимым добавить 100-150 кг/га чилийские селитры, содержит в себе обычно 4000-
8000 кг/га азота. Следовательно, удобрение здесь вносится исключительно только потому, что мы всеми силами стараемся нерациональной обработкой сделать готовый запас азота недоступным для растений.
На большое содержание азота в почве обратил внимание еще Либих и на основании этого утверждал, что хлевный навоз действует на почву не содержанием азота, а фосфором и калием. Ошибку Либиха доказали Бусенго и Нэйон, которые, удобрив один участок навозом, а другой золой из этого же количества навоза, получили в первом случае 14 зерен, во втором же – 4.
Несмотря на это, приверженцы минеральной теории не перестали идти за своим блуждающим огоньком, хотя теория Либиха была ошибочна в своем основании. «Либих, - говорит Дегерен, - мог создать свою минеральную теорию только потому, что ему не было известно количество фосфорной кислоты и калия в почве. Если бы он знал, как это знаем мы теперь, что почва содержит в себе не меньше фосфорной кислоты и калия, чем азота, то он должен бы был уступить.
В самом деле, если большое количество соединений азота в почве исключает необходимость удобрения им, то совершенно такой же вывод буде верен по отношению к фосфорной кислоте и калию. Употреблять их нет надобности, так как почти в каждой почве анализ обнаруживает их присутствие. Таким образом, мы пришли к заключению, согласиться с которым не возможно, что удобрения бесполезны и не нужны».
Последний вывод, с которым не осмеливается согласиться Дегерен, был бы, однако, вполне верен, если бы мы не были настолько бессильны в пользовании теми исполинскими запасами фосфорной кислоты, калия и азота, которые имеются в наших почвах.
Что касается самого дорогого элемента, азота, то кроме почвы, громадное количество его содержится в атмосфере. Но земледельцы Западной Европы, совершенно не способны пользоваться этим исполинским источником и тратят миллиарды на удобрения.
Дегерен считает, что препятствием этому является засуха, как это было во
Франции весной 1893 года, вследствие чего, не могла происходить нитрификация и растения не всходили. Он также пеняет на общепринятую систему обработки и мечтает о том, что техники придумают когда-то лучшую.
«Техники, пишет Дегерен, должны придумать орудие, которое будет разбивать, рыхлить, встряхивать и проветривать нашу землю совершенно иначе, как это делают наши сохи и плуги, которые очень может быть, через каких-нибудь 50 лет, будут собраны в музеях редкостей вместе с обугленными кольями диких народов, или сохою галлов».
Дегерену невдомек, что проходит третий десяток лет с тех пор, как новая система обработки, которая облегчает использование громадных запасов почвы и атмосферы, нашла у нас практическое применение и начала распространяться, вследствие чего, техникам здесь уже нечего делать. Цивилизованным европейцам не интересно знать, что делается у варваров-славян. Французы привыкли, чтобы мы заимствовали у них просвещение, и чтобы за патентом учености приходили к ним. Они того мнения, что, если что не прошло через Париж, то оно не может сделаться научным достоянием человечества.
Однако и цивилизованные французы могли бы потрудиться прийти к нам, чтобы увидеть хлебные злаки, выросшие более 3 аршин без удобрения, исключительно благодаря новому методу обработки.
Стоит посмотреть и на те хлеба, которые скрывают всадника на коне, о которых
Дегерену и во сне не грезилось; и на ту обильную растительность среди степей южной
России, где растения всходят и растут без дождя во время страшных засух, о которых

Овсинский И.Е. Новая система земледелия.
10 французы и понятия не имеют.
Стоит это все увидеть, чтобы раз им навсегда отречься от прежней системы обработки, которая уже не одного из земледельцев привела к банкротству.
Следует понять, что весь этот баланс формул обработки и рецептов удобрений, давно стал анахронизмом, и, что приверженцы старой системы, портя землю своей обработкой, стараются свою ошибку замаскировать и известкованием. В данном случае они поступают так, как врач, который одной рукой дает отраву, другой противоядие, утверждая при этом, что вся эта операция полезна для пациента.
Пора перестать верить в рациональность такого обращения с нашей почвой, которое доступно исключительно тем богачам, которые могут запрячь 6 или 8 волов в немецкий самоход (которому Дегерен предназначает место возле обгорелого кола диких). Пора начать извлекать пользу из тех громадных запасов питания для растений, которые могут обеспечить нам почва и атмосфера без колоссальных расходов.
В дальнейшем мы рассмотрим более подробно эти источники питания растений и укажем средства, с помощью которых питательные вещества, содержащиеся в почве и атмосфере, можно сделать доступными для возделываемых культур.
Глава 3.
Источникипитаниярастений: атмосфераипочва
Перечисленные в предыдущей главе питательные вещества находятся в меньшей степени в атмосфере, и в большей - в почве.
Атмосфера состоит из смеси газов, в которой присутствуют твердые тела в виде пыли, вместе с чрезвычайно важными для земледелия спорами бактерий. Самую главную часть атмосферы составляет механическая смесь из 20,81 частей кислорода и 79,19 частей азота, называемая воздухом. Как видим, воздух представляет собой громаднейший запасник самого дорогого из питательных веществ растений – азота.
Кроме азота и кислорода в атмосфере и другие газы. Так, например, под влиянием сильного электрического разряда кислород принимает форму, которая называется озоном, и отличается от кислорода характерным запахом и специфическими свойствами. Озон всегда присутствует в атмосфере, но в разных количествах, в зависимости от времени и места.
Кроме озона атмосфера содержит в себе углекислый газ, который в 1,25 раза тяжелее воздуха, а содержание его по объему в атмосфере составляет 0,0002-0,0005 частей. Здесь также присутствует окись углерода, азотная кислота и азотнокислые соединения, аммиак, углеводороды, сернистый водород и фосфорный водород.
Азотная кислота и азотнокислые соединения образуются под воздействием электрической искры (молнии) на влажную смесь азота и кислорода (воздуха), или в почве при постепенном разложении азотистых веществ. Азотная кислота находится в растворе, или в свободном состоянии, или же в соединениях (солях), большей частью аммиачных.
Углеводород (болотный газ) и сернистый водород выделяются при разложении органической материи, равно как фосфорный водород, освобождающийся, в особенности после жарких летних дней, из торфяных болот и кладбищ. Газ этот загорается в воздухе, пылая небольшим голубоватым пламенем (ложные огоньки).
Из твердых тел в атмосфере мы находим в водяных парах (образующих тучи и облака и возвращающихся на землю в виде дождя, града или снега, а также росы и инея) соль. Обнаружены также присутствие йода, крахмала, фосфора, органических частиц материи и блуждающие споры тайнобрачных растений.
Вообще-то, содержащие органических и неорганических веществ в атмосфере в некоторых случаях бывает достаточным для обеспечения питания растений без почвы.
«Следует заметить,- пишет профессор Бердо, - что и сам воздух, хотя в небольшой степени, содержит в себе составные части почвы. Атмосферный воздух состоит не только

Овсинский И.Е. Новая система земледелия.
11 из смеси известных газов (азота и кислорода с небольшой примесью углерода), но он также содержит в себе водяные пары вместе с некоторым количеством минеральных веществ обогащающих в достаточном количестве, чтобы обеспечить питанием некоторые растения, как, например, лишайники или некоторые тропические орхидеи, служащие настоящим украшением наших оранжерей, когда качаются в них красиво подвешенными и едва прикрытыми мхом».
Однако культурным растениям атмосфера служит главной поставщицей углерода, азота, водорода, кислорода и чрезвычайно важной для жизни растений – воды.
Остальные из важнейших химических элементов растений (см. главу 1) фосфор, калий, кальций, сера, магний, а также менее важные элементы, получают растения из почвы, которая содержит также большое количество азота в органических веществах.
Материк образовался из скал, которые разрушились под влиянием атмосферных факторов и создали почву, способную питать растения. Явление это произошло под совместным влиянием кислорода, угольной кислоты, воды, колебаний температуры, выделений корней растений, перегнойных кислот и, наконец, бактерий. Факторы эти действуют издавна. Усиление их действия является в настоящее время самой главной задачей земледельческого труда.
Рассматривая более подробно причины разрушения скал под влиянием перечисленных факторов, мы находим два рода явлений: одни из них физического, другие же химического свойства. К первым принадлежит действие воды совокупно с колебаниями температуры. Вода, которая пропитывает поверхность скалы, увеличивает свой объем на 1/10 и вследствие этого развивает громадное давление, разрушающее самые твердые скалы. Части, образовавшиеся под действием замерзающей воды, подвергаются химическим воздействиям атмосферного кислорода и угольной кислоты, вследствие чего разрушение горной породы ускоряется. Нужно отметить, что разрыхление породы только температурой, без участия химических и биологических факторов, представляет собой очень медленный процесс. Отметить это необходимо ввиду того, что мы придаем слишком большое значение действию мороза на зябь и забываем, что мороз задерживает деятельность бактерий и химические процессы в почве, что значительно уменьшает разрушающее действие мороза. В тропиках, где морозов нет, плодородная почва образуется несравненно быстрее, чем вблизи полюсов, где господствуют морозы.
Пахотная земля образовалась и постоянно образуется под сильным влиянием биологических и химических факторов. Процесс этот совершается с большей или меньшей скоростью в зависимости от химического состава скал и интенсивности действия факторов, производящих выветривание. Труднее поддаются выветриванию монолитные горные породы, состоящие, например, из кварца или известняка. Скалы же, образованные сочетанием различных глубинных пород, как например гранит или порфир, под влиянием физических и химических факторов разрушаются быстрее.
Все дело только в том, чтобы эти факторы могли как можно интенсивнее воздействовать на обломки скал различной величины, доводя их до состояния, обеспечивающего питание растений. Обломки эти по величине делят на две категории:
1) обломки крупные, возникающие под влиянием физических факторов и малопригодные к жизни на них растений (скелет почвы по Кноппу). Это есть запас, резерв, из которого растения могут извлекать питание только после более тщательного измельчения обломков;
2) так называемая мелочь, то есть самые мелкие части почвы, составляющие непосредственный источник питания растений и являющиеся продуктом химических факторов выветривания.
Следовательно, плодородие почвы зависит:
А) от химического состава образующих горных пород;
Б) от степени измельчения этих горных пород.
Породы химически бедные, такие как кварц, дают землю малоплодородную
(песчаную), вследствие чего труд над большим измельчением частичек такой земли дает менее значительные результаты.

Овсинский И.Е. Новая система земледелия.
12
Иначе обстоит дело, если почва образована из обломков химически богатых, но недостаточно измельченных горных пород, содержащих в себе калий, кальций, фосфор и т.д. В подобных случаях внесение удобрений в почву становится неоправданной расточительностью. Мы гораздо дешевле можем получить соответствующие питательные вещества для растений, ускоряя выветривание содержащихся в почве обломков, превращая более или менее крупные частицы скелета в мелочь, которая имеет большую суммарную поверхность для факторов выветривания и для корней растений.
В большинстве случаев почва содержит в себе огромное количество питательных веществ для растений, количество, которое Дегерен называет «ужасным». Однако, несмотря на это «ужасное» количество содержащегося в почве питания, все-таки тратятся громадные суммы, которые тоже можно назвать «ужасными», на искусственные удобрения и создается специальная литература об удобрении почвы.
Этот факт служит неопровержимым доказательством той истины, что при традиционной системе обработки почвы мы не в состоянии использовать тех огромных запасов питания для растений, которые содержатся в почве, потому что старая система обработки не только не способствует действию факторов, обеспечивающих растения питательными веществами, но даже затрудняет это действие.
Если бы мы захотели на погибель земледелия создать систему, затрудняющую использование питательных веществ из почвы, то нам не нужно бы было особенно трудиться над этой задачей - достаточно было бы выполнить советы приверженцев глубокой вспашки, которые вопрос о малой эффективности питательных веществ в почве разрешили самым тщательным образом. Благодаря этому «ужасное», как говорит Дегерен, количество питания в почве не доступно для растений, вследствие чего и результаты получаются действительно «ужасные».
Итак:
1) затрачиваются громадные суммы на увеличение тяглового усилия при глубокой вспашке;
2) тратятся миллиарды на удобрения, количество которых при рациональной обработке можно значительно уменьшить или же совсем не применять;
3) теряются миллиарды вследствие неурожаев при засухе, которая разоряет хозяйство при глубокой вспашке.
Знаменитый Круп своими снарядами для военного разрушения не принес столько вреда человечеству, сколько принес завод плугов для глубокой вспашки. Никакие военные контрибуции не сравняются с теми убытками, которые приносит земледелию глубокая вспашка. Достаточно вспомнить голод в России в 1891-92 гг., достаточно было проехать прошлой осенью (1897 г.) по югу России, чтобы глядя на черные от засухи поля понять всю ту беду, которую приносит земледелию ошибочная система обработки.
Для более подробного освещения этого вопроса мы должны привести цифры, указывающие с одной стороны на количество питательных веществ, которое содержится в атмосфере и почве, а с другой стороны - на количество питания, необходимое для получения урожая. Цифры эти убедят читателя, что содержание питательных веществ в почве иногда в 100 и более раз превышает потребность растений. Если, несмотря на это, приверженцы глубокой вспашки и советуют вносить в почву покупные удобрения, то этим они только дискредитируют свою систему обработки.
Азот
Начнем с самого дорогого из питательных элементов растений - азота. По
Буссингольту с урожаем 5-польного плодосмена в Эльзасе выносится в среднем 25,5 фунтов азота на 1 прусский морг, то есть около 40 кг на га. Это количество азота растениям может дать атмосфера и почва.
Азот атмосферы усваивается бобовыми растениями благодаря открытым
Гельгригелем клубеньковым бактериям. Другие растения питаются азотистыми соединениями, которые переходят из атмосферы в почву. Количество аммиака и азотной

Овсинский И.Е. Новая система земледелия.
13 кислоты в атмосфере и атмосферных осадках было определено Вилле, Бино, Госфордом и другими исследователями, причем полученные цифры значительно отличаются друг от друга. В среднем на 1 млн. частей воздуха, исследованного в различных местах и в разное время года, каждый из этих наблюдателей нашел частей аммиака:
Г. Вилле
22,41
Де Поре
3,5
Кемп (Ирландия)
3,88
Грегер (Мюльгаузен)
0,33
Трюениус (Висбаден)
0,13
Бино (Лион)
6,18
Горсфорд
47,6
Что же касается азотной кислоты, то мы не имеем даже приблизительных цифр относительно ее количества.
Исследование количества аммиака и азотной кислоты, содержащихся в атмосферных осадках, дало точно такие же результаты, как видно из прилагаемой таблицы.
Среднее содержание в дождевой воде:
Исследователи
Азотной кислоты
Аммиак а
Баррал (Париж)
6,21 3,72
Бобьер (Нант)
5,68 5,94
Буссингольт (Париж)
1,02 1,63
Бино (Лион)
1,00 6,8
Кнопп (Меккерн)
0,57 0,30
Кнопп (Меккерн)
9,80 4,00
Зима не способствует обогащению атмосферы азотистыми соединениями, так как низкая температура препятствует разложению органических веществ и образованию аммиака. Зимой нет молний, следовательно и этим путем азотная кислота образоваться не может. Однако в снеге найдено:
Исследователи
Азотной кислоты
Аммиака
Буссингольт (Париж)
1,66 1,20
Кнопп и Вольф
0,00 0,29
Несравненно большее количество аммиака и азотной кислоты найдено в росе, инее и тумане. Количество это доходит до 138 млн частей азотной кислоты и аммиака. Бывали случаи такого большого содержания аммиака в воде, конденсированной из тумана, что в ней синела красная лакмусовая бумага.
Итак, значит туман и роса самые обильные источники атмосферного аммиака и азотной кислоты. Источник этот тем более интересен, что если количество дождей, приносящих в почву аммиак и азотную кислоту, от нас не зависит, то количество осаждающейся в почве росы всецело зависит от системы обработки, что ниже мы и обсудим.
По Бино, количество аммиака и азотной кислоты, получаемых почвой из тумана, росы и инея сравнимо с тем количеством, которое поступает в почву с дождем и снегом.
Однако оно может быть значительно большим, если искусной обработкой мы сможем осадить в почве значительное количество росы.
На опытных станциях в Пруссии в среднем за три года найдено следующее количество соединений азота в дожде и снеге (в футах на 1 прусский морг):
В Кушеве (Познань)
1,4
В Инстербурге
3,6
В Даме
3,8

Овсинский И.Е. Новая система земледелия.
14
В Регенвальде
7,1
В Зорау
6,7
В Проскау
11,
9
Итого: в среднем на 1 прусский морг 5,75 фунтов азотных соединений. Так по Бино роса, иней, туман могут привнести в почву еще столько же азота, то общее поступление в почву этого элемента достигает около 12 фунтов на прусский морг.
Из вышеприведенных расчетов Буссингольта мы видим, что ежегодный вынос азота составляет в среднем 25,5 фунтов с морга. Следовательно, атмосфера через осадки может дать почве половину нужного для растений азота.
Точно такие же расчеты приводит Розенберг - Липинский в своем сочинении об обработке почвы. Эти расчеты могут более или менее приближаться к истине при глубокой вспашке.
Иначе обстоит дело при новой системе земледелия. Потому что в последнем случае обильное осаждение росы в почве (атмосферная ирригация) всецело зависит от воли земледельца, а мы уже видели, что роса есть самый обильный источник азота.
Кроме того, новая система земледелия способствует поглощению аммиака непосредственно из воздуха.
Далее, вследствие увлажнения в самой почве образуется соединения азота в количестве до сих пор не известном, которые не принимать во внимание также нет повода.
Нижеприведенная таблица (по Гофману) показывает способность к поглощению аммиака различными видами почв непосредственно из атмосферы:
Песок поглощал аммиака
0,000%
Сухая глина поглощала аммиака
0,201%
Влажная глина (9,5% Н
2
О)
5,000%
Сухой перегной (9,5% Н
2
О)
11,900%
Влажный перегной (20,3% Н
2
О)
16,600%
Следовательно, в наибольшей степени поглощает аммиак перегной и особенно перегной влажный. В этом отношении новая система обработки, оставляющая постоянно верхний перегной слой наверху и гарантирующая обилие влаги в почве, имеет решительное преимущество перед глубокой вспашкой, ибо выворачивание на поверхность глины и песка должно отрицательно влиять на поглощение аммиака почвой.
Теперь посмотрим, насколько новая система обработки способствует усвоению азота из других источников. Как мы уже видели, из атмосферных осадков самое большое количество азотных соединений содержит в себе роса. Росу мы признаем самым главным источником соединения азота, как из относительно высокого содержания их в росе, так и потому, что надлежащее исследование этого источника (но не при глубокой вспашке) всецело зависит от нашей воли.
Как известно, роса образуется из водяных паров, конденсирующихся вследствие соприкосновения с холодными предметами.
Ночью роса обильно осаждается на тех предметах, которые способны быстрее охлаждаться. В этом отношении разные компоненты почвы различаются следующим образом (по Шиблеру).
Песок удерживает тепло
100,00
Глина удерживает тепло
76,9
Гипс
73,8
Суглинистая почва
71,8
Известь углекислая
61,0
Перегной
49,0
Следовательно, свойство перегноя быстрее охлаждаться за собой более обильное

Овсинский И.Е. Новая система земледелия.
15 выпадение на пашне росы, содержащей в себе соединения азота.
Однако для нас более важное значение имеет дневная роса, осаждающаяся внутри пашни, если туда проникает воздух. На это обратил внимание И. Бочинский в небольшом сочинении об обработке почвы в 1876 году, а также Розенберг-Липинский. Кроме того, в последнее время образование подземной росы стало предметом исследования в России, степные хозяйства которой хронически страдают от засухи. Однако подземная роса исследуется не как источник азота, а как источник чрезвычайно важной для растении воды.
Количество подземной росы в слое мощностью в 1 аршин определено г. Ткаченко в 22 960 пудов или 30 600 ведер на 1 пруский морг.
Так как роса содержит 138 млн. частей азотных соединений, то этот источник доставляет в почву около 60 кг/га азота, т.е. количество значительно превышающее потребность растений. Если это количество будет избыточным, то мы можем уменьшить его до 12-13 фунтов на прусский морг, чтобы только удовлетворить потребность растений из атмосферных осадков.
Но кроме этого атмосферный азот попадает в почву другим путем, а именно, благодаря деятельности микроорганизмов, как это утверждает Бертолет и другие исследователи.
Если бактерии Бертолета существуют, то наличие перегноя и влаги составляет самое главное условие их деятельности. По Бертолету, на площади 1 гектар слой земли мощностью 8 см содержит азота:
Супесь
6,7-47,5 кг
Каолин
7,2-39,5 кг
Пашня
580-1543,0 кг
Когда Шлесинг на основании своих опытов опроверг существование открытых
Бертолетом бактерий, то последний утверждал, что опыты противника не удались только потому, что в земле, которую он брал для опытов не хватало глины, которая должна составлять главное условие развития бактерий. Бертолет полагает, что 19% глины это еще мало для надлежащего из развития.
Но исследования А. Готье и Р. Друина показали, что при меньшем содержании глины происходит поглощение азота, если только в почве есть перегной.
По доктору Годлевскому, не подлежит сомнению, что некоторые суглинки, особенно из вида синеслойных, могут ассимилировать свободный азот. Это впервые отметил Франк, а потом со всеми подробностями доказали Шлесинг и Лаурент.
По мнению Косовича содействует этому некоторые, сопутствующие суглинкам, бактерии, непохоже из тех, которые образуют клубеньки на корнях бобовых растений.
Следовательно, зеленый налет появляющийся на пахотных суглинках, следует считать полезным, потому что он может обогащать почву азотом.
Виноградский в последнее время обнаружил в почве некоторые бактерии, ассимилирующие свободный азот. Это анаэробы, которые могут развивать свою деятельность там, где кислород энергично поглощается аэробами.
Наконец, Либшер высказал гипотезу, что микроорганизмы, развивающиеся при возделывании бобовых растений, в благоприятных условиях могут ассимилировать азот без возделывания каких бы то ни было растений.
Правдоподобно, что азот, поступающий из этих источников, может при рациональной обработке с избытком перекрыть потребность растений. Но напрасное и бессмысленное оборачивание почвы при глубокой вспашке становится помехой для использования указанного источника азота. Таким же образом глубокая вспашка не дает возможности использовать и те огромные запасы азота, которые содержит в себе почва.
«Анализ показывает, - говорит Дегерен, - что 1 кг среднеплодородной земли содержит 1 г соединений азота. В более плодородных почвах содержание азота возрастает до 2 г. На кг почвы, еще больше содержание азота бывает на лугах. Если корни однолетних растений проникают в почву на глубину 35 см, то 1 га среднеплодородной

Овсинский И.Е. Новая система земледелия.
16 земли на этой плодородной земли на этой глубине будет содержать 4000 кг азота и 8000 кг его будет в более плодородной почве. Если количество азота в хорошем урожае свеклы или пшеницы мы примем за 100-120 кг/га, то можно удивляться, почему для получения хорошего урожая, к громадному количеству содержащегося в почве азота, нужно еще добавлять 200-300 кг/га чилийской селитры».
«Если мы вынуждены покупать чилийскую селитру, пишет далее Дегерен, то единственно потому, что мы можем вызвать весною в наших почвах очень слабую нитрификацию; когда плуг разрезает землю на пласты и переворачивает их, то это действие должно быть признано совершенно недостаточным для того, чтобы вызвать нитрификацию».
Итак, несмотря на огромные запасы азота в атмосфере и почве, старая система обработки не дает возможности использовать эти исполинские источники. Теперь перейдем к рассмотрению содержания в почве других питательных веществ для растений.
Калий
По доктору Меркеру хороший урожай выносит из почвы в среднем 60-90 кг/га калия. Содержание же калия в почве разные исследователи определяют в следующих количествах.
Флейшер
1   2   3   4   5   6

перейти в каталог файлов


связь с админом