Главная страница
Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
qrcode

Ответы на экзамен по биологии_ДГМУ. Биология теоретическая основа медицины. Методы исследования и этапы развития биологии


НазваниеБиология теоретическая основа медицины. Методы исследования и этапы развития биологии
АнкорОтветы на экзамен по биологии ДГМУ.pdf
Дата16.06.2019
Размер0.96 Mb.
Формат файлаpdf
Имя файлаOtvety_na_ekzamen_po_biologii_DGMU.pdf
оригинальный pdf просмотр
ТипДокументы
#54466
страница1 из 14
КаталогОбразовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
  1   2   3   4   5   6   7   8   9   ...   14
1
Ответы по биологии
1)
Биология – теоретическая основа медицины. Методы исследования и этапы развития биологии.
Термин биология (от греческого «био» -жизнь, «логос»-наука) введен в начале 19 века Ж-Б Ламарком и Г.Тревиранусом для обозначения науки о жизни как особом явлении природы. Предметом биологии как учебной дисциплины служит жизнь во всех ее проявлениях: строение, физиология, поведение, индивидуальное
(онтогенез) и историческое (эволюция, филогенез) развитие организмов, их взаимоотношение друг с другом и с окружающей средой.
Основными методами исследования являются: описательный, сравнительный, исторический и экспериментальный
Описательный метод. Для того, чтобы выяснить сущность явлений, необходимо прежде всего собрать фактический материал и описать его. Этот метод является главным приемом описания биологии во всех временах
Сравнительный метод позволяет путем сопоставления изучать сходства и различия организмов и их частей. На принципах этого явления была создана систематика, клеточная теория, метод способствовал утверждению эвол. представлений.
Исторический метод выясняет закономерности появления и развития организмов, становления их структуры и функции. Утверждением в биологии исторического метода наука обязана Дарвину
Экспериментальный метод исследования природы связан с активным воздействием на них путем постановки опытов в точно учитываемых условиях и путем изменения течения процессов в нужном исследователю направлении. Этот метод позволяет изучать явления изолированно и добиваться повторяемости их при воспроизведении тех же условий
Этапы развития на 9 странице в Зеленой книге Ярыгина.
2.Свойства и особенности живого. Его качественные отличия от неживого.
Дать определение, что такое жизнь. Уровни организации живого
Жизнь – качественно особая форма существования материи, высшая по сравнению с физической и химической формами её существования, представляет собой биологическую форму движения материи.
Свойства живого.
1)Самообновление, которое связано с постоянным обменом веществ и энергии и в основе которого лежит способность хранить и использовать биологическую информацию.
2)Самовоспроизведение, которое обеспечивает преемственность между поколениями биологических систем.
3)Саморегуляция, которая основана на потоке вещества, энергии и информации.
4)Большинство химических процессов в организме наблюдается в динамическом
2 состоянии
5)Живые организмы способны к росту
Признаки живого.
Обмен веществ. Живым существам присущ особый способ взаимодействия с окружающей средой – обмен веществ. Его содержание составляют взаимосвязанные и сбалансированные процессы ассимиляции и диссимиляции.
Результатом ассимиляции является образование и обновление структур организма, диссимиляции – расщепление органических соединений с целью обеспечения различных сторон жизнедеятельности необходимыми веществами и энергией. Таким образом, организм является по отношению к окружающей среде открытой системой.
Раздражимость. Раздражимость заключается в передаче информации от внешней среды к организму, на основе раздражимости осуществляется саморегуляция и гомеостаз
Репродукция. В связи с тем, что жизнь существует в виде отдельных биологических систем и существование каждой этой системы ограничено во времени, поддержание жизни на любом уровне связано с репродукцией. Любой вид состоит из особей, каждая из которых рано или поздно перестает существовать и благодаря размножению жизнь видов не прекращается.
Наследственность. Наследственностью называют общее свойство всех организмов сохранять и передавать признаки строения и функции от родителей к потомству. Хранение и передача наследственной информации осуществляется нуклеиновыми кислотами
Изменчивость. Изменчивость есть процесс возникновения качественных различий между особями одного и того же вида и проявляется при определенных условиях внешней среды только одного фенотипа либо в генетически обусловленных наследственных вариациях. Возникших в результате комбинаций, рекомбинаций и мутаций.
Рост и развитие. Организмы, возникшие в результате размножения, наследуют не готовые признаки, а определенную генетическую информацию. Эта информация реализуется в ходе онтогенеза. Она выражается в росте, что в свою очередь базируется на размножении молекул и других структур, а также их дифференцировке.
Живая природа является целостной, но неоднородной системой, которой свойственна иерархическая организация.
Уровни организации живого:
Молекулярный уровень. Элементарные структурные единицы – молекулы.
Основные процессы этого уровня: репликация биосинтез, мутации и передача информации.
3
Клеточный уровень. Структурными элементарными единицами этого уровня являются различные органоиды и компоненты клеток. Основные процессы уровня: способность к самовоспроизведению, регуляторность химических реакций, запасание и расходование энергии
Организменный уровень. Единицей уровня является организм. Основные процессы уровня: возникновение организмов, взаимодействие организмов между собой
Популяционно-видовой уровень. Единицей уровня являются особи, объединенные в популяции. Основные признаки: рождаемость, смертность, численность и смертность
Биогеоценозный и биосферный. Единицей уровня являются биогеоценоз и биосфера. Характерно активно взаимодействие живого и неживого вещества.
3.Прокариоты и эукариоты. Клеточная теория, ее история и современное понимание. Значение клеточной теории для биологии и медицины.
Выделяют 2 типа клеток: прокариоты и эукариоты.
Клетки прокариотического типа имеют особенно малые размеры, у них нет ядра, т.к. ядерный материал в виде ДНК не отграничен от цитоплазмы оболочкой. У клеток отсутствует мембранные органеллы. Генетический материал представлен единственной кольцевой хромосомой, который лишен основных белков гистонов.
У прокариот отсутствует клеточный центр. Для них нетипично внутриклеточное перемещение цитоплазмы. Время, необходимое для образования 2 дочерних клеток сравнительно мало. Прокариотические клетки не делятся митозом. К этому типу относятся бактерии и синезеленые водоросли
Эукариоты – ядерные организмы, имеющее ядро, окруженное ядерной мембраной. Генетический материал сосредоточен преимущественно в хромосомах, имеющих сложное строение и состоящих из нитей ДНК и белковых молекул. Клетки эукариотического типа имеют ядро, цитоплазму, органеллы и включения. Делятся клетки митотическое.
Эукариоты представлены 3 царствами: растениями, животными и грибами
Клеточная теория. Клеточная теория сформулирована немецким ученым
Шванном в 1839. В своей теории Шванн широко использовал работы ботаника
Шлейдена, которого по праву считают соавтором этой теории. Исходя из предположения об общей природе происхождения растительных или животных клеток, доказывая одинаковый механизм их возникновения, Шванн обобщил многочисленные сведения в виде теории, согласно которой клетка – структурнофункциональная единица всего живого.
Современная клеточная теория включает следующие положения:
1) клетка - единица строения и развития всех организмов.
2) клетки организмов разных царств живой природы сходны по строению. химическому составу, обмену веществ, основным проявлениям
4 жизнедеятельности.
3) новые клетки образуются в результате деления материнской клетки.
4) в многоклеточном организме клетки образуют ткани.
5) из тканей состоят органы.
4.Клетка – как универсальная форма организации живой материи. Основные структурные компоненты эукариотической клетки и их характеристика.
1. Клетка — элементарная структурная и функциональная единица растительных и животных организмов, способная к самовоспроизведению и развитию. В традиционном изложении клетку растительного или животного организма описывают как объект, отграниченный оболочкой, в котором выделяют ядро и цитоплазму.
Основные компоненты эукариотической клетки: плазматическая мембрана, ядро, цитоплазму
Наружная мембрана. Клетки многоклеточных организмов, как животных, так и растительных, обособлены от своего окружения оболочкой. Клеточная оболочка, или плазмалемма, животных клеток образована мембраной, покрытой снаружи слоем гликокаликса. Плазмалемма выполняет отграничивающую, барьерную и транс портную функции. Благодаря свойству избирательной проницаемости она регулирует химический состав внутренней среды клетки. В плазмалемме размещены молекулы рецепторов, которые избирательно распознают определенные биологически активные вещества. Наличие в оболочке рецепторов дает клеткам возможность воспринимать сигналы извне, чтобы целесообразно реагировать на изменения в окружаю щей их среде или состоянии организма.
Цитоплазма. В цитоплазме различают основное вещество (матрикс, гиалоплазма), включения и органеллы. Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Оно образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их друг с другом.
Органеллы — это постоянные структуры цитоплазмы, выполняющие в клетке жизненно важные функции. Выделяют органеллы общего значения и специальные. Последние в значительном количестве присутствуют в клетках, специализированных к выполнению определенной функции, но в незначительном количестве могут встречаться и в других типах клеток.
К органеллам общего значения относят элементы канальцевой и вакуолярной системы в виде шероховатой и гладкой цитоплазматической сети, пластинчатый комплекс, митохондрии, рибосомы и полисомы, лизосомы, пероксисомы, микрофибриллы и микротрубочки, центриоли клеточного центра. В растительных клетках выделяют также хлоропласты, в которых происходит фотосинтез.
Включениями называют относительно непостоянные компоненты цитоплазмы, которые служат запасными питательными веществами (жир, гликоген), продуктами, подлежащими выведению из клетки (гранулы секрета), балластными веществами (некоторые пигменты).
Ядро. Клеточное ядро состоит из оболочки, ядерного сока, ядрышка и хроматина.
5
Функциональная роль ядерной оболочки заключается в обособлении генетического материала (хромосом) эукариотической клетки от цитоплазмы с присущими ей многочисленными метаболическими реакциями, а также регуляции двусторонних взаимодействий ядра и цитоплазмы.
Основу ядерного сока, или матрикса, составляют белки. Ядерный сок образует внутреннюю среду ядра, в связи с чем он играет важную роль в обеспечении нормального функционирования генетического материала. В составе ядерного сока присутствуют нитчатые белки, что указывает на выполнение ими опорной функции.
Ядрышко представляет собой структуру, в которой происходит образование и созревание рРНК.
Хроматин является интерфазной формой существования хромосом клетки.
5.Клеточная мембрана, ее структурная организация, функции клеточной мембраны.
Плазматическая мембрана отделяет клетку и ее содержимое от окружающей среды. В настоящее время принята мозаичная модель строения клеточной мембраны. Согласно этой модели мембрана образована двумя слоями липидов, а белковые молекулы пронизывают толщу мембраны. Гидрофобные «хвосты» липидов, состоящие из остатков молекул жирных кислот, обращены внутрь двойного слоя. Снаружи располагаются гидрофильные «головки», состоящие из остатка молекулы спирта глицерина. Липиды являются основой мембраны, обеспечивают ее устойчивость и прочность, т.е. выполняют структурную
(строительную) функцию. Эта функция возможна благодаря гидрофобности липидов.
Основная функция плазматической мембраны транспортная. Она обеспечивает поступление питательных веществ в клетку и выведение из нее продуктов обмена. Помимо этой функции, плазматическая мембрана выполняет следующие функции: барьерную, отграничивающую и рецепторную функции. Благодаря свойству избирательной проницаемости она регулирует химический состав внутренней среды клетки. В плазмалемме размещены молекулы рецепторов, которые избирательно распознают определенные биологически активные вещества. Наличие рецепторов в оболочке дает клеткам способность воспринимать сигналы извне, чтобы целесообразно реагировать на изменения в окружающей среде
6. Цитоплазма клетки, ее составные части и назначение
В цитоплазме различают основное вещество, органеллы и включения. Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Белковый состав гиалоплазмы разнообразен. Важнейшие из белков представлены ферментами гликолиза, обмена сахаров, азотистых оснований, аминокислот и липидов. Ряд белков гиалоплазмы служит субъединицами, из которых происходит сбор таких структур, как микротрубочки.
6
Основное вещество цитоплазмы образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие друг с другом. Выполнение матриксом объединяющей, а также каркасной функции может быть связана с помощью сверхмощного электронного микроскопа микротрабекулярной сети, образованной тонкими фибриллами. Также функционально цитоплазматический матрикс является местом осуществления внутриклеточного обмена. Через гиалоплазму осуществляется значительный объем внутриклеточных перемещений веществ и структур. Гиалоплазму следует рассматривать как сложную коллоидную систему, способную переходить из жидкого состояния в гелеобразное.
7. Органеллы общего назначения. Их структура и функции.
Органеллы общего назначения делят на мембранные и немембранные.
Мембранные в свою очередь делятся на одномембранные и двумембранные.
К одномембранным относят:
Эндоплазматический ретикулум (ЭПР). Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство - полости ЭПР.. Различают два вида ЭПР: шероховатый, содержащий на своей поверхности рибосомы и гладкий, мембраны которого рибосом не несут.
Функции: разделяет цитоплазму клетки на изолированные отсеки, обеспечивая, тем самым пространственное отграничение друг от друга множества параллельно идущих различных реакций. Осуществляет синтез и расщепление углеводов и липидов (гладкий ЭПР) и обеспечивает синтез белка (шероховатый ЭПР), накапливает в каналах и полостях, а затем транспортирует к органоидам клетки продукты биосинтеза.
Аппарат Гольджи. Органоид, обычно расположенный около клеточного ядра (в животных клетках часто вблизи клеточного центра). Представляет собой стопку уплощенных цистерн с расширенными краями, состоит из 4-6 цистерн. Число стопок Гольджи в клетке колеблется от одной до нескольких сотен.
Важнейшая функция комплекса Гольджи - выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках. Здесь происходит синтез сложных углеводов из про-стых сахаров, созревание белков, образование лизосом.
Лизосомы. Самые мелкие одномембранные органоиды клетки, представляющие собой пузырьки диа-метром 0,2-0,8 мкм, содержащие до 60 гидролитических ферментов,. Образование лизосом происходит в аппарате Гольджи,.
Расщепление веществ с помощью ферментов называют лизисом, отсюда и название органоида.
Различают: первичные вторичные лизосомы - лизосомы, образовавшиеся в результате слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями; в них происходит переваривание и лизис поступивших в клетку веществ (поэтому часто их называют пищеварительными вакуолями):
7
Иногда с участием лизосом происходит саморазрушение клетки. Этот процесс называют автолизом. Обычно это происходит при некоторых процессах дифференцировки
Вакуоли — крупные мембранные пузырьки или полости в цитоплазме, заполненные клеточным соком. Вакуоли образуются в клетках растений и грибов из пузыревидных расширений эндоплазматического ретикулума или из пузырьков комплекса Гольджи. В меристематических клетках растений вначале возникает много мелких вакуолей. Увеличиваясь, они сливаются в центральную вакуоль, которая занимает до 70—90% объема клетки и может быть пронизана тяжами цитоплазмы
Функции вакуолей. Вакуоли играют главную роль в поглощении воды растительными клетками. Вода путем осмоса через ее мембрану поступает в вакуоль, клеточный сок которой является более концентрированным, чем цитоплазма, и оказывает давление на цитоплазму, а следовательно, и на оболочку клетки. В результате в клетке развивается тургорное давление, В запасающих тканях растений вместо одной центральной часто бывает несколько вакуолей, в которых скапливаются запасные питательные вещества (жиры, белки). Сократительные (пульсирующие) вакуоли служат для осмотической регуляции, прежде всего, у пресноводных простейших, Сократительные вакуоли поглощают избыток воды и затем выводят ее наружу путем сокращений.
К двумембранным органоидам относятся
Пластиды - характерные органеллы клеток автотрофных эукариотических организмов. Их окраска, форма и размеры весьма разнообразны. Различают хлоропласты, хромопласты и лейкопласты. Все типы пластид генетически родственны друг другу, и одни их виды могут превращаться в другие:
Хлоропласты имеют зеленый цвет, обусловленный присутствием основного пигмента — хлорофилла.
Хлоропласты ограничены двумя мембранами — наружной и внутренней.
Наружная мембрана отграничивает жидкую внутреннюю гомогенную среду хлоропласта — строму (матрикс). В строме содержатся белки, липиды, ДНК
(кольцевая молекула), РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна) а также ферменты, участвующие в фиксации углекислого газа. Внутренняя мембрана хлоропласта образует впячивания внутрь стромы —тилакоиды. Именно в мембранах тилакоидов локализованы светочувствительные пигменты, а также переносчики электронов и протонов, которые участвуют в поглощении и преобразовании энергии света.
Хлоропласты в клетке осуществляют процесс фотосинтеза. Лейкопласты — мелкие бесцветные пластиды различной формы Лейкопласты в основном встречаются в клетках органов, скрытых от солнечного света (корней, корневищ, клубней, семян). Они осуществляют вторичный синтез и накопление запасных питательных веществ — крахмала, реже жиров и белков. Хромопласты отличаются от других пластид своеобразной формой и окраской (оранжевые, желтые, красные). Хромопласты лишены хлорофилла и поэтому не способны к фотосинтезу
  1   2   3   4   5   6   7   8   9   ...   14

перейти в каталог файлов

Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей

Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей