Главная страница
Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
qrcode

вирусология Биотехнологические основы. Биотехнологические основы производства и получения интерферона, антибиотиков, пробиотиков и продуктов молочнокислого брожения, ферментов, витаминов. Стандартизация, принципы контроля и сертификация биопрепаратов


НазваниеБиотехнологические основы производства и получения интерферона, антибиотиков, пробиотиков и продуктов молочнокислого брожения, ферментов, витаминов. Стандартизация, принципы контроля и сертификация биопрепаратов
Анкорвирусология Биотехнологические основы .doc
Дата20.09.2017
Размер94 Kb.
Формат файлаdoc
Имя файлавирусология Биотехнологические основы .doc
ТипРеферат
#15927
КаталогОбразовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей


Министерство сельского хозяйства Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

«Костромская государственная сельскохозяйственная академия»
Факультет ветеринарной медицины и зоотехнии

Реферат

На тему: «Биотехнологические основы производства и получения интерферона, антибиотиков, пробиотиков и продуктов молочнокислого брожения, ферментов, витаминов. Стандартизация, принципы контроля и сертификация биопрепаратов»


Выполнил: студент 533 группы

Специальность «Ветеринария»

Лавренчук Василий Вадимович

Проверила: Беляева Дарина Сергеевна.


Кострома 2014

1. Особенности получения интерферонов

Известны способы получения лейкоцитарного интерферона человека из лейкоцитов донорской крови человека, индуцированных вирусами и другими индукторами.

Основным недостатком этих способов получения интерферонов являются вероятность контаминации конечного продукта вирусами человека, такими как вирус гепатитов В и С, вируса иммунодефицита и др.

В настоящее время более перспективным признан способ получения интерферона микробиологическим синтезом, который обеспечивает возможность получения целевого продукта со значительно более высоким выходом из сравнительно недорогого исходного сырья. Используемые при этом подходы позволяют создать оптимальные для бактериальной экспрессии варианты структурного гена, а также регуляторных элементов, контролирующих его экспрессию.

В качестве исходных микроорганизмов используют различные конструкции штаммов Pichia pastoris, Pseudomonas putida и Escherichia coli.

Недостатком использования P. pastoris в качестве продуцента интерферона, является крайне сложные условия ферментации этого типа дрожжей, необходимость строго поддерживать концентрацию индуктора, в частности метанола, в процессе биосинтеза.

Недостатком использования штаммов Ps. putida является сложность процесса ферментации при низком уровне экспрессии (10 мг интерферона на 1 л культуральной среды). Более продуктивным является использование штаммов Escherichia coli.

Известно большое количество плазмид и созданных на их основе штаммов Е. coli, экспрессирующих интерферон. Недостатком технологий, основанных на использовании этих штаммов, является их нестабильность, а также недостаточный уровень экспрессии интерферона.

Наряду с особенностями используемых штаммов эффективность процесса во многом зависит от используемой технологии выделения и очистки интерферона.

Для получения больших количеств ИФН используют шестидневные однослойные культуры клеток куриного эмбриона или культивируемые лейкоциты крови человека, зараженные определенным видом вируса. Иными словами, для получения ИФН создают определенную систему вирус-клетка.

Из клетки человека изолирован ген, ответственный за биосинтез ИФН. Экзогенный человеческий ИФН получают, используя технологию рекомбинантных ДНК. Процедура выделения кДНК ИФН-ов состоит в следующем:

1) Из лейкоцитов человека выделяют мРНК, фракционируют ее по размерам, проводят обратную транскрипцию, встраивают в сайт модифицированной плазмиды.

2) Полученным продуктом трансформируют Е. соli; образовавшиеся клоны подразделяют на группы, которые идентифицируют.

3) Каждую группу клонов гибридизируют с ИФН - мРНК.

4) Из образовавшихся гибридов, содержащих кДНК и хРНК, выделяют мРНК, проводят ее трансляцию в системе синтеза белка [4].

5) Определяют интерферонную противовирусную активность каждой смеси, полученной в результате трансляции. Группы, проявившие интерферонную активность, содержат клон с кДНК, гибридизировавшийся с ИФН - мРНК; повторно идентифицируют клон, содержащий полноразмерную ИФН - кДНК человека.

Получение антибиотика

Процесс получения антибиотика включает в себя следующие основные стадии (рис. 1):

1. получение соответствующего штамма — продуцента антибиотика, пригодного для промышленного производства;

2. биосинтез антибиотика;

3. выделение и очистка антибиотика;

4. концентрирование, стабилизация антибиотика и получение готового продукта.

Первая задача при поиске продуцентов антибиотиков - выделение их из природных источников. Биосинтез антибиотиков - наследственная особенность организмов, проявляющаяся в том, что каждый вид (штамм) способен образовывать один или несколько вполне определенных, строго специфичных для него антибиотических веществ.

Выявление потенциальной возможности образовывать в процессе жизнедеятельности антибиотики связано с условиями культивирования организмов. В одних условиях организм образует антибиотик, в других условиях тот же организм при хорошем росте не будет обладать способностью синтезировать антибиотическое вещество. Образование антибиотиков будет происходить только при развитии организма в специфической среде и при наличии особых внешних условий. Путем изменения условий культивирования можно получить больший или меньший выход антибиотика, или создать условия, при которых антибиотик вообще не будет образовываться. Можно также путем изменения условий культивирования продуцента добиться преимущественного биосинтеза одного из антибиотиков, при условии образования изучаемым организмом нескольких антибиотических веществ, или же получить новые формы антибиотиков, но только в пределах тех соединений, которые способны синтезироваться этим организмом.

К числу наиболее существенных факторов, оказывающих влияние на проявление антибиотических свойств микроорганизмов, относятся состав среды, ее активная кислотность, окислительно-восстановительные условия, температура культивирования, методы совместного выращивания двух или большего числа микроорганизмов и другие факторы.

Среды для культивирования микроорганизмов. Натуральные (комплексные) среды, состоящие из природных соединений и имеющие неопределенный химический состав (части зеленых растений, животные ткани, солод, дрожжи, фрукты, овощи, навоз, почва и т. д.), содержат все компоненты, необходимые для роста и развития микроорганизмов большинства видов.

Поскольку натуральные среды не позволяют получать строгие количественные данные для изучения физиологических и биохимических особенностей организма, применяют синтетические среды, которые подбирают для отдельных продуцентов индивидуально.

Источниками углерода могут быть органические кислоты, спирты, углеводы, сочетания различных углеродсодержащих соединений. При промышленном получении ряда антибиотиков в качестве источников углерода нередко применяют картофельный крахмал, кукурузную муку или другие растительные материалы.

Источники азота оказывают большое влияние на образование микроорганизмами антибиотических веществ. Обычно в средах для культивирования микроорганизмов источником азота служат соли азотной (реже азотистой) кислоты, аммонийные соли органических и неорганических кислот, аминокислоты, белки и продукты их гидролиза.

Обычно наиболее благоприятным для микроорганизмов является соотношение C/N = 20. Однако для образования антибиотика такое соотношение не всегда оптимально. Поэтому для каждого продуцента необходимо подбирать соответствующее соотношение углерода и азота.

Источниками минерального питания служат фосфор, сера и другие макро- и микроэлементы.

Сера входит в состав некоторых антибиотиков, образуемых грибами (пенициллин, цефалоспорин, глиотоксин и др.), бактериями (бацитрацины, субтилины, низины) и актиномицетами (эхиномицины, группа тиострептона). Обычно источником серы в среде служат сульфаты. Однако при биосинтезе пенициллина лучшим источником серы для продуцента служит тиосульфат натрия.

Кроме того, для биосинтеза антибиотиков необходимы и отдельные микроэлементы. Так, продуцент альбомицина S. subtropicus образует антибиотик при значительной концентрации железа в среде. Железо необходимо для образования хлорамфеникола и других антибиотиков.

Биосинтезу ряда антибиотических веществ (хлорамфеникола, стрептомицина, пенициллина и др.) способствуют ионы цинка.

Стимулирующее влияние на биосинтез гентамицина, курамицина А, фософономицина оказывают ионы кобальта.

Ионы галогенов входят в состав некоторых тетрациклиновых антибиотиков и хлорамфеникола.

Влияние рН среды. Многие бактериальные организмы, синтезирующие антибиотики, лучше развиваются при рН около 7,0, хотя некоторые, например молочнокислые стрептококки, продуцирующие низин, лучше развиваются в среде при рН = 5,5÷6,0.

Большинство актиномицетов хорошо развиваются при начальных значениях рН среды в пределах от 6,7 до 7,8; в большинстве случаев жизнеспособность актиномицетов при рН ниже 4,0–4,5 подавлена.

Температура. Для большинства бактериальных организмов температурный оптимум развития лежит в диапазоне 30–37 °С. Для продуцента грамицидина С оптимальная температура для развития и биосинтеза равна 40 °С.

Актиномицеты, как правило, культивируются при температуре 26–30°С, хотя некоторые виды стрептомицетов могут развиваться как при пониженных (от 0 до 18 °С), так и при повышенных (55–60 °С) температурах.

Для большинства мицелиальных грибов оптимальная температура составляет 25–28 °С.

Аэрация. Большинство изученных продуцентов антибиотиков являются аэробами. Для биосинтеза многих антибиотиков (пенициллин, стрептомицин и др.) максимальное их накопление происходит при степени аэрации, равной единице, при которой через определенный объем среды за 1 мин продувается такой же объем воздуха.

В процессе развития продуцента антибиотика в промышленных условиях потребность организма в кислороде меняется в зависимости от стадии развития, вязкости культуральной жидкости.

Биотехнология ферментов

Фементы (энзимы) (от лат. fermentum - закваска) - это белки, выполняющие роль катализаторов в живых организмах. Основные функции ферментов - ускорять превращение веществ, поступающих в организм и образующихся при метаболизме (для обновления клеточных структур, для обеспечения его энергией и др.), а также регулировать биохимические процессы (напр., реализацию генетической информации), в т.ч. в ответ на изменяющиеся условия.

Выделяют 6 основных классов ферментов:

I класс – Оксидоредуктазы

II класс – Трансферазы

III класс – Гидролазы

IV класс – Лиазы

V класс – Изомеразы

VI класс – Лигазы

Достоинства ферментов по сравнению с неорганическими катализаторами:

- нетоксичность,

- работают в мягких условиях, не требующих высоких температур и, следовательно, затрат топлива,

- используют доступное сырье (часто отходы), что выгодно с экономической и экологической точек зрения.

Ферменты по объёму производства занимают 3 место после аминокислот и антибиотиков.

Известно и охарактеризовано примерно 2000 ферментов по данным энзимологии. В промышленности используется всего около 30 ферментов. Из производимых ферментов чаще всего используются (и продаются) гидролазы – щелочные и нейтральные протеазы (60%). Они в основном используюся в качестве детергентов при производстве синтетических моющих средств. На втором месте - гликозидазы (30%). Они используются в производстве кондитерских изделий, фруктовых и овощных соков. Основное место среди них занимают глюкоизомераза и глюкозамилаза, применяющиеся при обогащении фруктозой кукурузных сиропов и составляющие около 50% рынка пищевых ферментных препаратов.

Ферменты применяются также в текстильной, кожевенной, целлюлозно-бумажной, медицинской, химической промышленности.

Получение ферментов

Традиционные источники ферментов – это природные объекты, в которых содержание фермента составляет не менее 1%.

Без применения биотехнологии для получения ферментов в больших количествах пригодны только некоторые растительные организмы на определенной фазе их развития: например, проросшее зерно различных злаков и бобовых, латекс и сок зеленой массы некоторых растений, а также ткани и органы животных: сычуг крупного рогатого скота, семенники половозрелых животных.

Зато практически неограниченный источник ферментов – это микроорганизмы и грибки. За счёт размножения они самостоятельно наращивают объёмы производства ферментов.

В настоящее время наиболее прогрессивным является метод культивирования микроорганизмов при непрерывной подаче в ферментер как питательной среды, так и посевного (микробного) материала.

Пробиотики

По воздействию пробиотики можно классифицировать на следующие группы:

1. Применяемые для обеспечения функционального питания животных;

2. Применяемые для реабилитационной терапии и нормализации микробиоценоза после длительного использования антимикробных средств ( антибиотики, сульфаниламиды, нитрофураны и др.);

3. Применяемые для коррекции иммунитета, стимуляции роста и развития молодняка, повышения качества продукции;

4. Применение для терапии при заболеваниях ЖКТ бактериальной и вирусной этиологии.

Включение пробиотиков в технологию выращивания молодняка – наиболее современный способ профилактики желудочных болезней, основанный на экологически безопасных механизмах поддержания высокого уровня колонизационной резистентности кишечника. Мировая практика доказала, что пробиотики предупреждают риск заселения кишечника животных условно-патогенными бактериями. Подавление роста колоний и блокирование токсикологических факторов патогенной микрофлофры лежит в основе профилактического эффекта пробиотиков.

Бактерии-пробионты или пробиотики обеспечивают опережающее заселение кишечника животных нормальной и дружественной микрофлорой и создают биологический барьер, преграждающий доступ к ней патогенных и условно-патогенных микроорганизмов.

Они вырабатывают комплекс биологически активных соединений, избирательно воздействующих на условно-патогенные микробы. Например, лизоцим резко снижает способность патогенных бактерий к делению и размножению, молочная кислота замедляет их рост, перекись водорода разрушает их клеточную стенку. Бактериоцины обладают общим бактериостатическим действием на грамотрицательную микрофлору.

Таким образом, по силе воздействия на негативную кишечную микрофлору пробиотики являются прямой альтернативой антибиотикам.

Пробиотики в отличие от антибиотиков не вызывают привыкания со стороны условно-патогенных микроорганизмов, обладающих R-плазмидой, кодирующей устойчивость к химиопрепаратам. Продукты жизнедеятельности бактерий-пробионтов не накапливаются в органах и тканях животных и не влияют на товарное качество конечной продукции. Пробиотики не усиливают экологические характеристики энтеробактерий, ответственных за вирулентность. Они безопасны для окружающей среды и обслуживающего персонала.

Возможности использования пробиотиков в ветеринарии затрагивают довольно широкий круг проблем, начиная от коррекции кишечного биоценоза и распространяясь на коррекцию иммунной, гормональной и ферментативной систем животных.

Биотехнология продуктов молочно кислого брожения

Молочнокислые бактерии подразделяют на 2 группы – гомоферментативные и гетероферментативные. Гомоферментативные бактерии (например, Lactobacillus delbrückii) расщепляют моносахариды с образованием двух молекул молочной кислоты в соответствии с суммарным уравнением:

C6H12O6 = 2CH3CHOH-COOH

Гетероферментативные бактерии (например, Bacterium lactis aerogenes) ведут сбраживание с образованием молочной кислоты, уксусной кислоты, этилового спирта и CO2, а также образуют небольшое количество ароматических веществ - диацетила, эфиров ит. д.

При молочнокислом брожении превращение углеводов, особенно на первых этапах, близко к реакциям спиртового брожения, за исключением декарбоксилирования пировиноградной кислоты, которая восстанавливается до молочной кислоты за счёт водорода, получаемого от НАД-Н. Гомоферментативное молочнокислое брожение используется для получения молочной кислоты, при изготовлении различных кислых молочных продуктов, хлеба и в силосовании кормов в сельском хозяйстве. Гетероферментативное молочнокислое брожение происходит при консервировании различных плодов и овощей путём квашения.

Молочнокислое брожение представляет собой разложение сахара под действием молочнокислых бактерий с образованием молочной кислоты. В общем суммарном виде его можно пред ставить следующим уравнением:

С6Н12О6 = 2С3Н6О3 + 18 ккал.

Это брожение часто наблюдается в молоке и вызывает его скисание. Отсюда и получили свое название вид брожения, бактерии, вызывающие его, а также основной продукт брожения - кислота. Молочнокислые бактерии бывают шаровидной и палочковидной формы. Они неподвижны, спор не образуют и являются факультативными анаэробами.

Различные виды молочнокислых бактерий в равных условиях продуцируют разное количество кислоты, что объясняется их неодинаковой кислотоустойчивостью. Палочковидные бактерии образуют больше кислоты, чем шаровидные (кокки).

Молочнокислые бактерии способны сбраживать только моно- и дисахариды и совсем не сбраживают крахмал и другие поли сахариды, так как не выделяют соответствующих ферментов.

Некоторые из этих бактерий вырабатывают антибиотические вещества, действующие против возбудителей кишечных заболеваний.

Молочнокислые бактерии широко распространены в природе, они постоянно встречаются в почве, на различных растениях, на плодах и овощах, в молоке и т. д.

Наибольшее значение имеют следующие молочнокислые бактерии: молочнокислый стрептококк, болгарская, ацидофильная, сырная, дельбрюковская, огуречная, капустная палочки и др.

Нередко гнилостных бактерий в только что выдоенном молоке оказывается в несколько раз больше, чем молочнокислых бактерий. Однако развивающиеся молочнокислые бактерии образуют молочную кислоту, которая подавляет жизнедеятельность гнилостных бактерий.

Через некоторое время в молоке остаются главным образом молочнокислые бактерии, продолжающие усиленно размножаться и накапливать молочную кислоту, под действием которой молоко вскоре свертывается. Полученная таким путем простокваша (самоквас) обычно имеет неприятный привкус и запах, так как в ней содержатся продукты жизнедеятельности других микроорганизмов. Употребление в пищу молока-само кваса опасно для здоровья, так как в нем могут находиться патогенные микроорганизмы, сохранившие жизнеспособность, несмотря на образование молочной кислоты.

При получении молочнокислых продуктов (простокваши, кефира, ацидофилина и др.) в производственных условиях мо локо предварительно подвергают пастеризации, а затем заквашивают специальными заквасками, содержащими культуры молочнокислых бактерий. Это дает возможность получать молочнокислые продукты определенного и высокого качества.

Молочнокислое брожение в хлебопечении позволяет предотвратить развитие вредных бактерий в тесте, вызывающих картофельную болезнь (тягучесть) хлеба, а также способствует улучшению вкусовых свойств хлеба.

Молочная кислота, образующаяся в результате этого брожения, придает особый вкус квашеным овощам и препятствует развитию гнилостных бактерий.

При промышленном получении молочной кислоты в качестве сырья используют крахмал, патоку и другие сахаристые мате риалы. Молочную кислоту применяют в кондитерском производстве и в производстве безалкогольных напитков.

Витамины

Большинство витаминов выделяют из натуральных пищевых продуктов. Ведь витамины - это натуральные вещества, содержащиеся в продуктах питания, поэтому пищевые добавки, будь то в виде капсул, таблеток, порошков или жидкостей, тоже производят из пищевых продуктов. Хотя многие витамины можно получить путем синтеза, тем не менее их выделяют, как правило, из натуральных источников.

Витамин А, например, получают из масла печени рыб, а витамины группы В - из дрожжей или печени. Самый полноценный витамин получают из плодов розы - из тех ягод, которые остаются после того, как опадают лепестки. Натуральный витамин Е получают из соевых бобов, зародышей пшеницы или других зерновых культур.

Сухая или водорастворимая форма?

Жирорастворимые витамины A, D, Е и К могут быть произведены в сухом, то есть в водорастворимом виде. Такие формы выпуска этих витаминов рекомендуются тем, кто страдает расстройством желудка после приема масел или имеет некоторые кожные расстройства, проявляющиеся, например, в виде сьшей или прыщей. Указанные формы выпуска показаны и тем, кто соблюдает диету с исключением из рациона большинства жиров. Поскольку для нормальной ассимиляции, то есть усвоения, жирорастворимым витаминам нужен жир, я советую вам использовать "сухую" форму витаминов A, D, Е, К обязательно в том случае, если вы находитесь на диете с низким содержанием жира.

Пролонгированные формы

Шагом вперед в производстве витаминов была разработка добавок в пролонгированной (timerelease) форме. Пролонгирование - это процесс, при помощи которого витамины заключаются в микрокапсулы, затем связываются в специальной основе, что обеспечивает их постепенное непрерывное выделение, всасывание и усвоение в течение 8-12 часов. Большинство витаминов - водорастворимые - и поэтому не могут накапливаться в организме. Если они используются не в пролонгированной форме, то быстро всасываются, попадают в кровоток и независимо от дозы в течение 2-3 часов выделяются с мочой.

Добавки в пролонгированной форме могут обеспечить оптимальную эффективность витаминов, уменьшить их потерю с мочой и поддерживать стабильные уровни витаминов в крови круглосуточно.

Наполнители и связующие.

В состав витаминных препаратов иногда входит гораздо больше всяких дополнительных веществ, чем мы можем догадываться, а иногда и гораздо больше, чем указано на этикетке. Наполнители, связующие, смазывающие вещества и т.п. не обязательно должны указываться изготовителем на этикетке и, действительно, зачастую так и происходит. Но, если вы все же хотите иметь представление о том, что вам приходиться глотать, вам поможет следующий перечень:

Разбавители или наполнители. Эти нейтральные вещества добавляются в таблетки для увеличения их объема с тем, чтобы их размеры подходили для прессования. В лучшем случае для этого используется дикальция фосфат, являющийся превосходным источником кальция и фосфора. Это белый порошок, который получают из очищенной горной породы. Иногда с этой целью используются сорбитол и целлюлоза {растительное волокно).

Связующие вещества.Эти вещества называют еще и грануляторами, они придают порошкообразным материалам способность к сцеплению, удерживают все ингредиенты таблетки вместе. Наиболее часто с этой целью применяются целлюлоза - главная составляющая часть растительного волокна и этилцеллюлоза. Используются и другие связующие вещества.

Камедь(гуммиарабик) - растительная смола (одного из видов акации) содержится в перечне веществ, которые можно добавлять в продукты питания. Однако оказалось, что она может вызывать сильные приступы бронхиальной астмы и высыпания на коже, особенно у тех, кто страдает аллергией, и у беременных женщин.

Альгин(альгиновая кислота или альгинат натрия) - растительные углеводы, получаемые из морских водорослей, которые, как оказалось, также могут быть вредны для здоровья, так как обладают мутагенными свойствами, то есть могут вызывать пороки развития в ходе беременности или угнетать репродуктивную функцию (ухудшать работу детородных органов).Можно поэтому полагать, что если вы собираетесь забеременеть, уже беременны или кормите грудью, то вам следует избегать любых продуктов, содержащих альгинаты.

Лецитин и сорбитолтакже иногда используются в качестве связующих средств.

Смазывающие вещества. Их добавляют в таблетки, чтобы не было прилипания таблеток в процессе штампования. Чаще с этой целью применяются кальция стеарат, который получают из натурального растительного масла, и оксид кремния, используется также и стеарат магния.

Стандартизация, принципы контроля и сертификация биопрепаратов

Стандартизация ЛС - разработка и применение унифицированных требований и методов исследования лекарственных форм (стандартов).

Стандарт качества ЛС - нормативный документ, содержащий перечень нормируемых показателей и методов контроля качества лекарственных средств, утверждаемый Министерством здравоохранения Российской Федерации (Минздравом России).

Система стандартизации должна предъявлять такие требования к разработке, клиническим испытаниям, производству и реализации ЛС, которые обеспечивали бы максимальную их безопасность, требуемое фармакологическое действие и гарантированное качество на всех этапах их применения.

В общем случае, такие требования наиболее полно отражены в требованиях GLP (Good Laboratory Practice), GCP (Good Clinical Practice) и GMP (Good Manufacturing Practice), являющиеся частными случаями международных стандартов ИСО 9000 и регламентирующих доклинические и клинические испытания, производство и реализацию ЛС. Отметим, что в USP XXIII также приведены требования GMP для ЛС. В настоящее время в Украине подготовлены отечественные требования GMP.

Переход на требования GLP, GCP и GMP требует достаточно высокой культуры производства и больших материальных затрат. В тех странах, где по каким-то причинам еще не сложились условия для полного перехода на эти требования, при создании системы стандартизации ЛС используются их основные элементы.

Основные принципы стандартизации ЛС:

1.Реализоваться могут только те ЛС, которые разрешены к медицинскому применению и реализации в данной стране.

стандартизация сертификация лекарственное средство

2.Реализовываться могут только те ЛС, на которые имеется утвержденная или согласованная соответствующим государственным органом аналитическая нормативно-техническая документация (НТД).

3.НТД должна обеспечивать объективный контроль качества ЛС, получаемого по данной технологии. В общем случае, конкретная НТД может обеспечивать объективный контроль ЛС, полученного только по конкретной технологии.

4.Уровень производства должен обеспечивать возможность получения ЛС с показателями качества, заложенными в НТД.

5.Система контроля качества реализуемых ЛС должна обеспечивать возможность выявления брака.

К сожалению, требования пункта 3 очень часто недопонимаются и недооцениваются. Типичная ситуация: в Украину ввезли импортную субстанцию (парацетамол), технология производства которой была неизвестна, проконтролировали ее по действующей НТД и на основании этого сделали вывод о качестве данной субстанции. Очевидно, этого мало. Поскольку технология неизвестна, то неизвестны остаточные растворители, технологические примеси, которые могут не контролироваться вышеуказанными НТД. Если необходимость в ввозе данной субстанции существует, то обязательно следует провести дополнительные (прежде всего, хроматографические) исследования. Аналогично обстоит дело и с готовыми ЛС.

Пункт 4 означает, что далеко не на каждом фармацевтическом предприятии может производиться данное ЛС. Например, для производства инъекций нужны особые требования к чистоте, оборудованию, персоналу. В противном случае получить качественный препарат в принципе невозможно.

Пункт 5 характеризует взаимоотношения производителей и потребителей. Система контроля качества должна обеспечивать поддержание производителями соответствующего уровня производства, выполнения ими требований НТД и регламентов, а также возможность выявления случайного брака и фальсификации. Последнее особенно важно для сильнодействующих и жизненно важных ЛС.


перейти в каталог файлов

Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей

Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей