Главная страница
Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
qrcode

Физиология. Ответы на экзаменационные вопросы. Экзаменационные вопросы по Физиологии 2010 год процессы происхождения биопотенциала покоя. Роль порогового раздражения в возникновении возбуждения. Особенности местного и распространяющегося процессов возбуждения


НазваниеЭкзаменационные вопросы по Физиологии 2010 год процессы происхождения биопотенциала покоя. Роль порогового раздражения в возникновении возбуждения. Особенности местного и распространяющегося процессов возбуждения
АнкорФизиология. Ответы на экзаменационные вопросы
Дата15.11.2016
Размер2.1 Mb.
Формат файлаdoc
Имя файлаFiziologia_Otvety_na_ekzamenatsionnye_voprosy.doc
ТипЭкзаменационные вопросы
#1999
страница16 из 21
КаталогОбразовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
1   ...   13   14   15   16   17   18   19   20   21


Фибринолитическая система крови. Фибринолиз — растворение фибрина — имеет огромное физиологическое значение. Благодаря ему из кровотока удаляется фибрин, рассасываются тромбы, образуются высокоактивные антикоагулянты и антиагреганты.

Фибринолитической активностью обладают многие ткани и органы, в том числе легкие.

Фибринолиз осуществляется протеолитической ферментной системой крови плазминоген — плазмин.

Методы определения времени свертывания крови. Существует несколкьо методов определения времени свёртывания крови. Наиболее известные: Способ Мак-Магро, капельный способ, способ по Сухареву. Принцип двух последних заключается в определении времени спонтанного свёртывания крови и позволяет выявить грубый дефицит факторов свёртыванрия – фибриногена, антигемофильных глобулинов, протромбина.

Методы определения времени кровотечения крови. Наиболее известный метод – это метод уколочной пробы по Дюке. В норме кровотечение должно длится 2-3 минуты.
#77 Какими методами можно проанализировать внешнее дыхание человека? Объясните, что позволяет врачу делать заключение об отклонении параметров внешнего дыхания от нормы. Изменение какого показателя внешнего дыхания будет свидетельствовать о сужении воздухоносных путей?

Внешнее дыхание - газообмен между организмом и окружающим его атмосферным воздухом Внешнее дыхание представляет собой ритмический процесс, частота которого у здорового взрослого человека составляет 16-20 циклов в 1 мин. Основная задача внешнего дыхания заключается в поддержании постоянного состава альвеолярного воздуха — 14% кислорода и 5% углекислого газа.

Основные показатели внешнего дыхания и методы их определения.

Дыхательный объем — количество воздуха, которое человек вдыхает и выдыхает в покое.

Резервный объем вдоха — количество воздуха, которое человек может дополнительно вдохнуть после нормального вдоха.

Резервный объем выдоха — количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха.

Остаточный объем — количество воздуха, оставшееся в легких после максимального выдоха.

Жизненная емкость легких — максимальное количество воздуха, которое можно выдохнуть после наибольшего вдоха, состоящее из суммы дыхательного объема и резервных объемов вдоха и выдоха.

Общая емкость легких — максимальное количество воздуха, содержащегося в легких при наибольшем вдохе, является суммой жизненной емкости и общей емкости легких.

Из всех перечисленных функциональных компонентов наибольшее практическое значение имеют дыхательный объем и жизненная емкость легких.

Жизненная емкость легких (ЖЕЛ) является показателем подвижности легких и грудной клетки. Она зависит от многих факторов: конституции, возраста, пола, степени тренированности. С возрастом ЖЕЛ уменьшается, что связано со снижением эластичности легких и подвижности грудной клетки. У женщин ЖЕЛ в среднем на 25 % ниже, чем у мужчин. У мужчин ростом 180 см она в среднем составляет 4,5 л.

Объем вдыхаемого — выдыхаемого воздуха и жизненной емкости легких можно измерить с помощью спирометра.
#78
#79 Проанализируйте последовательность процессов при вдохе и выдохе (пассивном и активном). Раскройте роль плевральной полости в дыхании и проанализируйте последствия одностороннего и двустороннего пневмоторакса.

Механизм внешнего дыхания. Внешнее дыхание - газообмен между организмом и окружающим его атмосферным воздухом Внешнее дыхание представляет собой ритмический процесс, частота которого у здорового взрослого человека составляет 16-20 циклов в 1 мин. Основная задача внешнего дыхания заключается в поддержании постоянного состава альвеолярного воздуха — 14% кислорода и 5% углекислого газа.

Механизм вдоха. Во время вдоха при увеличении объема грудной клетки в замкнутой плевральной полости давление сильно падает. Вследствие различия между атмосферным давлением в альвеолах и плевральным давлением легкие растягиваются, в целом увеличиваясь в объеме, следуя за грудной клеткой. При этом давление в полости легких падает и становится ниже атмосферного. Легкие через воздухоносные пути сообщаются с атмосферой. Появившаяся разница между давлением в легких и атмосферным давлением приводит к тому, что воздух начинает поступать через воздухоносные пути (трахея, бронхи) в альвеолы, заполняя их, при этом давление выравнивается. В естественных физиологических условиях воздух в легкие поступает пассивно, как бы «засасываясь» благодаря разрежению в легких, а не нагнетается, как могло бы быть в случае повышения давления во внешней среде.

Механизм выдоха. Выдох в основном происходит пассивно: межреберные мышцы расслабляются, купол диафрагмы поднимается. В результате объем грудной клетки уменьшается и давление в плевральной полости возрастает. Это давление передается на легочную ткань, поэтому одновременно повышается давление воздуха в альвеолах. Теперь уже давление воздуха в легких становится больше, чем в атмосфере, и воздух благодаря этому начинает выходить из легких по воздухоносным путям наружу.

Отрицательное давление в плевральной полости. Если измерить давление в плевральной полости во время дыхательной паузы, то можно обнаружить, что оно ниже атмосферного давления на 3—4 мм рт.ст., т.е. отрицательное. Это вызвано эластической тягой легких к корню, создающей некоторое разрежение в плевральной полости.

Во время вдоха давление в плевральной полости еще больше уменьшается за счет увеличения объема грудной клетки, а значит, отрицательное давление возрастает. Величина отрицательного давления в плевральной полости равна: к концу максимального выдоха - 1-2 мм рт. ст., к концу спокойного выдоха - 2-3 мм рт. ст., к концу спокойного вдоха -5-7 мм рт. ст., к концу максимального вдоха - 15-20 мм рт. ст.

Во время выдоха объем грудной клетки уменьшается, одновременно возрастает давление в плевральной полости, причем в зависимости от интенсивности выдоха оно может стать положительным.

Пневмоторакс. В случае повреждения грудной клетки в плевральную полость входит воздух. Это явление называется пневмотораксом. При этом легкие сжимаются под давлением вошедшего воздуха вследствие эластичности ткани легких, поверхностного натяжения альвеол. В результате во время дыхательных движений легкие не способны следовать за грудной клеткой, при этом газообмен в них уменьшается или полностью прекращается.

При одностороннем пневмотораксе дыхание только одним легким на неповрежденной стороне может обеспечить дыхательную потребность при отсутствии физической нагрузки. Двусторонний пневмоторакс делает невозможным естественное дыхание, в этом случае единственным способом сохранения жизни является искусственное дыхание.
#80 Объясните мех-м газообмена между альвеолярным воздухом и кровью капилляров малого круга кровообращения при нормальном и понижено атмосферном давлении.

Газообмен и легких. Для нормального газообмена между альвеолярным воздухом и кровью необходимо, чтобы состав альвеолярного воздуха поддерживался на постоянном уровне. Это достигается ритмическими дыхательными движениями, обеспечивающими вентиляцию легких.

Значение парциального давления и напряжения газов.

Вдыхаемый воздух имеет наибольшее парциальное давление кислорода (159 мм рт.ст.) и наименьшее парциальное давление двуокиси углерода (0,23 мм рт.ст.)- Парциальное давление газов в различных альвеолах легких неодинаково. Различия обусловлены неравномерностью вентиляции разных долей легких и неодинаковым их кровоснабжением. В среднем парциальное давление кислорода при нормальных атмосферных условиях поддерживается в альвеолярном воздухе на уровне

102 мм рт.ст., а двуокиси углерода — на уровне около 40 мм рт.ст. В то же время парциальное давление двуокиси углерода в притекающей к альвеолам венозной крови составляет 48 мм рт.ст., а парциальное давление кислорода не превышает 40 мм рт.ст. Благодаря градиенту давлений происходит транспорт газов через стенку альвеол: двуокись углерода покидает венозную кровь и поступает в альвеолярный воздух, а кислород диффундирует в противоположном направлении — из альвеолярного воздуха в кровь. Оттекающая от альвеол легких артериальная кровь имеет парциальное давление кислорода 100 мм рт.ст., а двуокиси углерода — 40 мм рт.ст.

В покое поглощение организмом кислорода составляет в среднем 280 мл/мин; выделение двуокиси углерода при этих же условиях — 230 мл/мин.

Факторы, определяющие газообмен. Насыщение крови кислородом и удаление из нее двуокиси углерода зависят от трех факторов: 1) альвеолярной вентиляции; 2) кровотока в легких; 3) диффузионной способности тканей легких. Эти факторы — вентиляция, перфузия и диффузия — вариабельны и неравномерно проявляют себя в различных отделах легочных долей у здоровых лиц. Кровь, оттекающая из хорошо вентилированного участка, газообмен в которой происходит более эффективно, постоянно перемешивается с кровью другого участка легкого, где газообмен может быть снижен. В результате неравномерность диффузионных процессов в легких является важным фактором эффективности газообмена.

Дополнительной внелегочной причиной, влияющей на содержание дыхательных газов в крови, является изменение кровотока через артериоловенулярные шунты, по которым венозная кровь, минуя легкие, поступает в артерии большого круга.
#81 Объясните мех-мы транспорта кислорода кровью. Охарактеризуйте кривую диссоциации оксигемоглобина и ф-ра, влияющие на сродство гемоглобина к кислороду.

Обогащенная кислородом кровь направляется по сосудам с током крови из легких в ткани организма. Кислород транспортируется кровью двумя способами: в связанном с гемоглобином виде — в форме оксигемоглобина и за счет физического растворения газа в плазме крови.

Физическое растворение. Все газы, в том числе и кислород, в соответствии со своим парциальным давлением могут физически растворяться в жидкости. Так, в артериальной крови содержание физически растворимого кислорода составляет 0,003 мл в 1 мл крови.

И хотя доля кислорода, переносимого за счет физического растворения невелика, этот процесс имеет огромное значение для жизнедеятельности.

Химическое соединение. Большая часть кислорода переносится кровью в виде химических соединений с гемоглобином. Один моль гемоглобина может связать до четырех молей кислорода и в среднем 1 г гемоглобина способен связать 1,34—1,36 мл кислорода. Исходя из этого, можно определить кислородную емкость крови, характеризующую количество кислорода, содержащееся в 1 л крови. Принимая во внимание, что в норме в 1 л крови присутствует 150 г гемоглобина, можно рассчитать, что в 1 л крови содержится 0,2 л кислорода.

Характеристика кривой диссоциации оксигемоглобина.

Связывание кислорода с гемоглобином и высвобождение его зависят от парциального давления кислорода. Соотношение количества гемоглобина и оксигемоглобина в крови иллюстрирует кривая диссоциации оксигемоглобина.

Чем выше парциальное давление кислорода, тем больше содержание оксигемоглобина; при парциальном давлении 80 мм рт.ст. практически весь гемоглобин насыщается кислородом, за исключением незначительного количества (1—2 %), «занятого» двуокисью углерода.



Факторы, влияющие на сродство гемоглобина к кислороду.

Динамика кривой зависит от нескольких факторов. Кривая может сдвигаться относительно оси абсцисс вправо или влево (эффект Бора) в зависимости от сопутствующего парциального давления двуокиси углерода и величины рН. При этом реальная физиологическая кривая имеет S-образную форму. При увеличении содержания двуокиси углерода и закис-лении крови кривая диссоциации оксигемоглобина сдвигается вправо и, напротив, при снижении РСо2 и защелачивания крови кривая сдвигается влево.

Биологическое значение кривой диссоциации оксигемоглобина. Кривая диссоциации оксигемоглобина имеет важное биологическое значение для переноса кислорода кровью. Участок кривой, соответствующий низким парциальным значениям кислорода, характеризует содержание оксигемоглобина в капиллярах тканей, а фрагмент кривой, лежащий в области высокого парциального давления кислорода 80—100 мм рт.ст., соответствует крови в легочных капиллярах.

Эффективность транспорта кислорода к тканям определяют два фактора: количество оксигемоглобина, образовавшегося в легких, и количество кислорода, отдаваемого тканям, что зависит от степени распада оксигемоглобина в восстановленный гемоглобин. Процесс наиболее эффективного переноса кислорода к тканям соответствует S-образной форме кривой диссоциации оксигемоглобина. В области высокого парциального давления кислорода кривая близка к насыщению кислородом крови, а в области низких значений парциального давления кислорода в тканях значительная часть оксигемоглобина отдает кислород и превращается в восстановленную форму.

Эффект Бора. Огромное биологическое значение для транспорта кислорода и двуокиси углерода имеет эффект Бора.

При увеличении парциального давления двуокиси углерода в тканях кривая диссоциации оксигемоглобина, сдвигаясь вправо, отражает повышение способности оксигемоглобина отдавать кислород тканям и тем самым высвобождаться для дополнительного связывания двуокиси углерода и переноса ее избытка из тканей в легкие.

Напротив, при снижении парциального давления двуокиси углерода и смещении рН крови в основную сторону (алкалоз) сдвиг кривой диссоциации оксигемоглобина влево означает снижение способности оксигемоглобина отдавать кислород тканям и поглощать двуокись углерода для транспорта ее к легким.

Сдвиг кривой диссоциации оксигемоглобина иллюстрирует взаимосвязь транспорта кислорода и двуокиси углерода в крови и сродство гемоглобина к этим газам.
#82 Объясните мех-мы транспорта углекислого газа кровью, роль карбоангидразы. Проанализируйте роль дыхания в регуляции рН крови.

Перенос углекислого газа. Двуокись углерода, образующаяся в тканях, переносится с кровью к легким и выделяется с выдыхаемым воздухом в атмосферу. В отличие от транспорта кислорода она транспортируется кровью тремя способами.

Формы транспорта углекислого газа. Во-первых, так же как и кислород, двуокись углерода переносится в физически растворенном состоянии. Содержание физически растворенной двуокиси углерода в артериальной крови составляет 0,026 мл в 1 мл крови, что в 9 раз превышает количество физически растворенного кислорода. Это объясняется гораздо более высоким коэффициентом растворимости двуокиси углерода.

Во-вторых, двуокись углерода транспортируется в виде химического соединения с гемоглобином — карбогемоглобина.

В третьих — в виде гидрокарбоната НСОз, образующегося в результате диссоциации угольной кислоты.

Механизм переноса двуокиси углерода. Перенос двуокиси углерода из тканей в легкие осуществляется следующим образом. Наибольшее парциальное давление двуокиси углерода в клетках тканей и в тканевой жидкости — 60 мм рт.ст.; в притекающей артериальной крови оно составляет 40 мм рт.ст. Благодаря этому градиенту двуокись углерода движется из тканей в капилляры. В результате ее парциальное давление возрастает, достигая в венозной крови 46—48 мм рт.ст. Под влиянием высокого парциального давления часть двуокиси углерода физически растворяется в плазме крови.

Роль карбоангидразы. Большая же часть двуокиси углерода претерпевает химические превращения. Благодаря ферменту карбоангидразе она соединяется с водой, образуя угольную кислоту Н2СО3. Особенно активно эта реакция идет в эритроцитах, мембрана которых хорошо проницаема для двуокиси углерода.

Угольная кислота (Н2СО3) диссоциирует на ионы водорода Н+ и гидрокарбоната (НСОз), которые проникают через мембрану в плазму.

Наряду с этим двуокись углерода соединяется с белковым компонентом гемоглобина, образуя карбоаминовую связь.

В целом 1 л венозной крови фиксирует около 2 ммоль двуокиси углерода. Из этого количества 10 % находится в виде карбоаминовой связи с гемоглобином, 35 % составляют ионы гидрокарбоната в эритроцитах, и оставшиеся 55 % представлены угольной кислотой в плазме.

Роль дыхания в регуляции рН крови.

Содержание двуокиси углерода и кислорода в крови и тканях активно влияет на рН. Избыток двуокиси углерода ведет к увеличению содержания угольной кислоты и повышению концентрации водородных ионов. Снижение двуокиси углерода вызывает обратную реакцию — развитие защелачивания (алкалоз).

При недостатке кислорода (гипоксия) усиливается доля гликолитических реакций в метаболизме, что проявляется в избытке недоокисленных продуктов, молочной, а-кетоглютаровой и пировиноградной кислот. При выраженной гипоксии наблюдается сдвиг рН в кислую сторону (ацидоз).

Кривая диссоциации двуокиси углерода.

Содержание двуокиси углерода в крови зависит от ее парциального давления; зависимость описывается кривой диссоциации двуокиси углерода.

По своему характеру эта кривая принципиально не отличается от кривой дисс
1   ...   13   14   15   16   17   18   19   20   21

перейти в каталог файлов

Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей

Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей