Главная страница
Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
qrcode

Александр Михайлович Уголев Теория адекватного питания и трофология


НазваниеАлександр Михайлович Уголев Теория адекватного питания и трофология
Анкорquot Teoria adekvatnogo pitania i trofologia quot Ugolev A M.pdf
Дата13.01.2017
Размер6.94 Mb.
Формат файлаpdf
Имя файлаquot_Teoria_adekvatnogo_pitania_i_trofologia_quot_Ugolev_A_M.pdf
оригинальный pdf просмотр
ТипРешение
#6168
страница5 из 25
КаталогОбразовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей
1   2   3   4   5   6   7   8   9   ...   25
процессов
Ранее по типу питания все организмы в зависимости от источника потребляемого углерода подразделялись на две основные группы:
аутотрофов, к которым относили большинство растений и некоторые бактерии, и гетеротрофов — всех животных. Принималось, что организмы первой из этих двух групп используют лишь неорганические вещества, а второй — органические вещества наряду с неорганическими. Высказано предположение разделить гетеротрофов на биофагов-организмов, потребляющих другие живые организмы,
и сапрофагов-организмов, использующих мертвые органические остатки (Wiegert, Owen, Однако деление организмов на аутотрофов и гетеротрофов не представляется вполне удачным. Строго говоря, полная аутотрофия существовать не может, так как все живые существа нуждаются в поступлении пищи извне, те. в экзотрофии. При этом используются как органические материалы, таки неорганические, а значит каждый организм в какой-то мере является гетеротрофом и не может быть полным аутотрофом в прямом смысле этого термина.
В связи с принципиальными дефектами существующих классификаций нами предложена новая естественная классификация организмов, которая охватывает все разнообразие типов питания (Уголев, 1980, 1985). На одном полюсе этой классификационной шкалы находятся полные абиотрофы, на другом — полные биотрофы, а вся шкала между этими крайними группами занята организмами с возрастающей долей биотрофии. Под абиотрофами понимаются организмы, питающиеся только неорганическими компонентами, под биотрофами — организмы, потребляющие в качестве пищи органические и неорганические вещества, содержащиеся в биологических объектах. Старое понятие «гетеротроф» может быть использовано для обобщенного описания частичных и полных биотрофов. Термин
«аутотроф» кажется неоправданными должен быть заменен термином «абиотроф» (см. также гл. Переходы от абиотрофии к биотрофии сложны и постепенны. В сущности полностью абиотрофных организмов, те. тех, которые синтезируют все необходимые органические компоненты из неорганических, сейчас фактически не существует. Например,
фотосинтезирующие организмы нельзя считать полными абиотрофами, так как они обычно неспособны к фиксации азота неорганического происхождения (азот минеральных солей, который используется растениями, на самом деле тоже образуется при разложении организмов. Следовательно, растения абиотрофны по большинству, ноне по всем характеристикам. С другой стороны,
азотфиксирующие бактерии абиотрофны по азоту, но для получения энергии используют биологические источники пищи. Таким образом,
хотя полностью абиотрофных организмов почти не существует, есть абиотрофные системы, образуемые комплексом растение- азотфиксирующие бактерии. В большинстве случаев предпочтительнее говорить не об абиотрофных организмах, а об абиотрофных сообществах, или комплексах. Эти комплексы включают в себя организмы, синтезирующие безазотистые органические вещества
(
углеводы, липиды и др, но нуждающиеся в органическом азоте, который они получают от бактериальных сообществ, и абиотрофы,
фиксирующие азотно использующие органические источники углерода. Биотрофия у некоторых животных становится почти полной,
например у хищников, однако они используют воду и соли небиологического происхождения. Полная биотрофия характерна для некоторых монофагов (организмов, питающихся единственным видом пищи, паразитов, эмбрионов, симбионтов и некоторых других.
Биотрофия в широком смысле существует в нескольких вариантах, имеющих различное биологическое значение, но близкие, а иногда и идентичные механизмы. Первый вариант — естественная экзотрофия, те. питание живыми организмами или их частями, второй —
сапрофитизм, те. питание продуктами жизнедеятельности других организмов, отмирающими организмами, их частями. К биотрофии относится и эндотрофия — питание за счет внутренних депо и собственных структур тела или клетки, например темновое питание растений, а также ассимиляция собственного органического вещества голодающими животными и человеком.
Новая естественная классификация организмов на основе трофических процессов позволяет преодолеть еще некоторые трудности, хотя выводы подчас кажутся парадоксальными. Действительно, с этой точки зрения для растений углекислый газ служит экзонутриентом. Для азотфиксирующих бактерий такими нутриентами являются азот и водород (вода. Нетрудно видеть, что в этом случае обнаруживаются фундаментальные различия трофических процессов у растений и животных. Так, у растений существует дополнительный трофический ярус — преобразование первичных пищевых веществ, связанное с усвоением неорганических веществ и внешней энергии, во вторичные питательные вещества. В отличие от растений животные смогли прогрессировать, утратив многочисленные реакции, связанные с этим первым ярусом, причем у животных в большинстве случаев экзо- и эндонутриенты почти совпадают. Наконец, чрезвычайно важно, что в большинстве случаев обмен энергии в биологических объектах, использующих кислород, является замкнутым циклом, сходным с предложенным недавно техниками экологически чистым кислородно-водородным технологическим циклом. Отличие заключается в том,
что в большинстве случаев в биологических системах разделение водорода и кислорода не доводится до конца в том смысле, что выделения чистого водорода почти никогда не происходит. По-видимому, выделение чистого водорода было бы энергетически невыгодно, а кроме того, имело бы, по всей вероятности, глобальное отрицательное последствие — перемещение водорода в верхние слои атмосферы. В тоже время включение водорода в соединения с углеродом дает возможность для построения экономичных запасов
«топлива». Важно, что энергия составляет один из главных компонентов пищи, тогда как окислители не являются таковыми. Происхождение и эволюция эндо- и экзотрофии
Трофика и происхождение жизни
В свете современных знаний ясно, что механизмы эндотрофии и экзотрофии родственны, а не противоположны, как представлялось ранее, когда экзотрофию рассматривали в качестве гетеротрофии, а эндотрофию — в качестве аутотрофии. Становится понятным,
например, структурное и функциональное сходство микроворсинок кишечника, обеспечивающего внешнюю биотрофию, и микроворсинок плаценты, реализующей питание зародыша за счет матери.
Однако вернемся к истокам жизни. Наиболее вероятно, что первичные носители жизни были примитивными и не имели сложного аппарата, необходимого для фиксации азота и фотосинтеза (см. также гл. 9). Они получали основные органические материалы в виде мономеров из небиологических источников (возможно, из омывающего их раствора. Следовательно, скорее всего, они были абиотрофами, потребляющими органические вещества. По-видимому, уже на ранних стадиях эволюции образовались ферментные системы, обеспечивающие частичное гидролитическое расщепление внутренних структур таких носителей жизни для использования их в качестве источника энергии и для построения новых структур. Такие гидролазы были, вероятно, наиболее древними. Можно предположить, что они первоначально обеспечивали перестройку структур и эндотрофию, а затем могли использоваться для утилизации соседних, но отмирающих организмов и их структур. Следовательно, гидролазы служили основой для формирования эндотрофии, а на более поздних этапах — экзотрофии.
Так, на базе первичной эндотрофии формировалась экзотрофия всех известных живых организмов. Эта древность происхождения и первичность эндотрофии позволяют понять сходство эндо- и экзотрофических процессов и осуществляющих их систему столь далеких друг от друга организмов, как бактерии, высшие растения и животные. Кроме того, становится ясно, что все основные типы пищеварения сформировались на этой общей основе и сходны у всех организмов. Действительно, внеклеточное, мембранное и внутриклеточное пищеварение у всех живых организмов обладает многими общими чертами. Системы же фото- и хемосинтеза, необходимые для
абиотрофии, — это более поздние и весьма специализированные достижения эволюции.
Принципиальное сходство механизмов ассимиляции пищевых веществ с помощью деполимеризующих систем (те. механизмов пищеварения) у большинства организмов имеет огромное адаптивное значение. Благодаря этому сходству организмы могут приспосабливаться к изменению места в трофической цепи (за исключением первого организма, у которого органические вещества синтезируются из неорганических. Другими словами, принципиально возможно превращение растительноядных организмов в хищников того или иного порядка или в паразитов возможен переход от хищничества к сапрофитному питанию, и т. д.
На основе общих механизмов возникли такие специализированные способы питания, как эмбриональное и молочное. Таким образом,
сходство, а иногда идентичность механизмов ассимиляции пищи у различных организмов — неслучайность, а отражение эволюционной общности их происхождения.
Один из остро дискутируемых вопросов, возникающих при анализе происхождения жизни на Земле, — это вопрос о пищевых источниках для первичных, наиболее примитивных живых систем, неспособных к сложным синтезам. Предполагается, что такие системы использовали первичный бульон, содержащий все необходимые мономеры (см. также гл. 9). Мы обсуждали вопрос о появлении наиболее древних форм гетеротрофии и высказали предположение, что они возникли на основе первичной абиотрофии, связанной с использованием собственных структур тела протобионтов под воздействием собственных гидролаз при нехватке пищевых ресурсов —
протоголоде. Ферменты, осуществляющие гидролиз таких структур, могли затем использоваться для расщепления структур соседних протобионтов, особенно погибавших в силу тех или иных причин. Возможно, в таких случаях гидролиз происходил как под влиянием ферментов, выделяющихся поглощающим организмом (протосекреция), таки в результате аутолиза погибших протобионтов. Как отмечено выше, входе дальнейшей эволюции аутолиз, в частности индуцированный, получил большое распространение в животном мире в качестве механизма начальных стадий гидролиза пищи. В этой связи важны соображения Н. Горовица (Horowitz, 1945) о происхождении синтеза органических молекул и появлении аутотрофии. В 1945 гон высказал предположение относительно того, что по мере исчерпания внешних пищевых ресурсов выживали лишь те формы протобионтов, которые были способны к синтезу недостающих пищевых веществ
(см. гл. Следовательно, по всей вероятности, уже на ранних стадиях развития жизни трофические связи стали играть большую роль. При этом процесс эволюции в значительной степени определялся доступностью и качеством источников питания и энергии. Замкнутые трофические системы
Решение многих задач на Земле и за ее пределами требует создания искусственных, полностью или почти полностью замкнутых трофических систем или даже небольших биосфер. В таких системах с участием организованных в трофические цепи организмов различных видов и должен происходить круговорот веществ, как правило, для поддержания жизни больших и малых сообществ людей или животных. Формирование искусственных замкнутых трофических систем и искусственных микробиосфер имеет непосредственное прикладное значение при освоении космического пространства, мирового океана и пр.
Проблема создания замкнутых трофических систем, в особенности необходимых при длительных космических полетах, давно волнует исследователей и мыслителей. Поэтому поводу были развиты многие фундаментальные идеи. В отношении таких конструируемых человеком систем были выдвинуты важные, хотя в ряде случаев и нереальные требования. Речь идет о том, что трофические системы должны быть в высокой степени продуктивными, надежными, должны обладать высокими скоростями и полнотой дезактивации токсических компонентов. Ясно, что реализовать такую систему исключительно трудно. Действительно, высказывались сомнения о возможности конструирования безопасной и надежной экосистемы (обзор Odum, 1986). Тем не менее следует попытаться хотя бы определить максимальную емкость трофической системы, образно говоря, выяснить, каким должен быть маленький остров, пригодный для жизни Робинзона Крузо, если он будет накрыт прозрачным, но непроницаемым колпаком.
В качестве примера можно привести недавно разработанную модель искусственной биосферы (биосфера II), которая является стабильной замкнутой системой и необходима для жизни в различных областях космического пространства, в том числе на Луне и Марсе
(
обзор: Allen, Nelson, 1986). Она должна моделировать условия жизни на Земле, для чего следует хорошо знать природные технологии нашей планеты. Кроме того, такая биосфера должна содержать инженерные, биологические, энергетические, информационные открытые системы, живые системы, накапливающие свободную энергию, и т. д. Как и биосфера, искусственная биосфера должна включать в себя подлинную воду, воздух, скалы, землю, растительность и т. д. Она должна моделировать джунгли, пустыни, саванну, океан, болота,
интенсивное земледелие и т. д, напоминающие родину человека (рис. 1.8). При этом оптимальное отношение искусственного океана и поверхности суши должно составлять не 70:30, как на Земле, а 15:85. Однако океан в искусственной биосфере должен быть по крайней мере враз более эффективным, чем настоящий.
Рис. 1.8. Поперечный срез искусственной биосферы II (по Allen, Nelson, Недавно эти же исследователи (Allen, Nelson, 1986) представили описание модельного комплекса связанных искусственных биосфер,
разработанных для продолжительной жизни 64–80 человек на Марсе. Каждая из таких 4 биосфер, радиально расположенных по отношению к так называемому техническому центру, служит жизненным пространством для 6-10 человек. В техническом центре находится резервный океан для смягчения окружающей среды и поддержания замкнутой системы в целом. Существуют также биологическая, транспортная, горная и оперативная группы, а также госпиталь для визитеров с Земли, Луны или других частей Марса.
Конкретные проблемы питания в космосе при длительных полетах выходят за пределы этой книги. Тем не менее следует сказать, что при длительных полетах в космическом аппарате создается микромир, изолированный от привычной для человека среды на долгое, а в некоторых случаях и на неопределенно долгое время. Особенности этого микромира, ив частности особенности его трофики, во многом определяют существование системы в целом. По всей вероятности, одной из самых важных ступеней биотического круговорота служит
деградация продуктов жизнедеятельности. Значение процессов деградации часто недооценивается. В частности, при обсуждении проблемы пищевых ресурсов человек традиционно рассматривается как высшее и конечное звено трофической цепи (обзоры Odum, 1986;
Biotechnology…, 1989, и др. Между тем такая постановка проблемы уже привела к формированию серьезных экологических дефектов, так как экологическая система может быть устойчивой лишь при сочетании эффективного поступления и расхода веществ. Примеры этому весьма многочисленны. К одному из них относится драматический эпизод в Австралии, где произошло разрушение растительных покровов пометом овец и коров из-за отсутствия жуков-навозников.
Во всех случаях проблемы деградации продуктов жизнедеятельности и элиминации самых ослабленных членов популяции чрезвычайно важны. Недавно развиваемая точка зрения неожиданно получила подтверждение. При моделировании длительного межпланетного полета экипажа, состоящего из 10 человек, калифорнийские исследователи обнаружили, что круговорот веществ значительно улучшается, если в систему, включающую человека, растения, водоросли, бактерии и т. д, введены две козы. Улучшение в этой системе циркуляции веществ достигается в некоторой степени за счет появления в рационе молока и, следовательно,
дополнительных полноценных пищевых компонентов (в том числе белков, нов значительно большей степени благодаря ускорению процессов деградации растительных остатков в желудочно-кишечном тракте коз. Понимание трофической системы как динамических циклов, а не цепей или пирамид с начальными и конечными звеньями, по-видимому, будет способствовать не только более правильному отражению действительности, но и более разумным действиям, по крайней мере уменьшающим вредное влияние на окружающую среду.
По всей вероятности, при создании искусственных биосфер в дальнейшем также могут быть обнаружены многие интересные феномены, так как мы еще не знаем всех способов формирования минимального, но уже удовлетворительного трофического цикла.
Существует ряд указаний на то, что в небольшой по численности группе людей бактериальная популяция желудочно-кишечного тракта может быть неустойчивой. Со временем она будет беднеть, особенно если будут применяться какие-либо вмешательства лечебного характера с использованием антибиотиков. Поэтому для восстановления кишечной микрофлоры космических экипажей было бы весьма целесообразно иметь некоторый банк бактерий. Кроме того, при длительных космических полетах не могут быть исключены мутации растений и бактерий, входящих в трофический цикл. Это может приводить к серьезным нарушениям свойств соответствующих организмов и их биологической роли. Эти обстоятельства необходимо иметь ввиду, так как, по всей вероятности, трофическая система
(
искусственная микротрофосфера) космического корабля должна быть не только достаточно современной, но и гибкой, что сможет обеспечить ее определенные изменения. В этом плане обращает на себя внимание оптимистическое предсказание, что уже в XXI в.
миллионы человек смогут жить в космических поселениях (O'Neill, 1977) (см. также гл. 5).
1.10. Заключительные замечания
Рассмотрение в рамках одной науки — трофологии — всей совокупности ассимиляторных процессов, начиная с клеточного уровня и кончая планетарным, — это не попытка механически объединить разнородные явления, а закономерный результат длительных наблюдений и поисков многих поколений исследователей. В конце концов за бесконечным разнообразием типов питания стоят общие фундаментальные процессы, образующие единую, хотя и многоуровневую, систему — систему трофических взаимодействий. На одном полюсе этой системы стоит трофика клетки как необходимое условие жизни, на другом — превращение и перемещение огромных масс в биосфере, построенные на трофической специализации, взаимодействиях и взаимосвязанности в пределах планеты. Громадные различия в масштабах, которыми оперирует трофология, не должны удивлять, ибо вновь следует напомнить, что, хотя носителями жизни и являются отдельные организмы, в целом жизнь возможна лишь как планетарное явление. На всех уровнях организации живых систем начальное звено жизнедеятельности — ассимиляция, а это предмет трофологии.
1   2   3   4   5   6   7   8   9   ...   25

перейти в каталог файлов

Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей

Образовательный портал Как узнать результаты егэ Стихи про летний лагерь 3агадки для детей